Weyl Scalars on Compact Ricci Solitons

被引:0
作者
G. Catino
P. Mastrolia
机构
[1] Politecnico di Milano,
[2] Università degli Studi di Milano,undefined
来源
The Journal of Geometric Analysis | 2019年 / 29卷
关键词
Ricci solitons; Triviality results; Weyl tensor; Weyl scalars; 53C20; 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the triviality of compact Ricci solitons under general scalar conditions involving the Weyl tensor. More precisely, we show that a compact Ricci soliton is Einstein if a generic linear combination of divergences of the Weyl tensor contracted with suitable covariant derivatives of the potential function vanishes. In particular, we recover and improve all known related results. This paper can be thought as a first, preliminary step in a general program which aims at showing that Ricci solitons can be classified finding a “generic” [k, s]-vanishing condition on the Weyl tensor, for every k,s∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k, s\in \mathbb {N}$$\end{document}, where k is the order of the covariant derivatives of Weyl and s is the type of the (covariant) tensor involved.
引用
收藏
页码:3328 / 3344
页数:16
相关论文
共 29 条
  • [1] Bach R(1921)Zur Weylschen Relativit atstheorie und der Weylschen Erweiterung des Krummungstensorbegriffs Math. Z. 9 110-135
  • [2] Cao H-D(2012)On locally conformally flat gradient steady Ricci solitons Trans. Am. Math. Soc. 364 2377-2391
  • [3] Chen Q(2013)On Bach-flat gradient shrinking Ricci solitons Duke Math. J. 162 1149-1169
  • [4] Cao H-D(2010)On complete gradient shrinking Ricci solitons J. Differ. Geom. 85 175-185
  • [5] Chen Q(2016)The Weyl tensor of gradient Ricci solitons Geom. Topol. 20 389-436
  • [6] Cao H-D(2016)Conformal Ricci solitons and related integrability conditions Adv. Geom. 16 301-328
  • [7] Zhou D(2017)Gradient Ricci solitons with vanishing conditions on Weyl J. Math. Pures Appl. (9) 108 1-13
  • [8] Cao X(2017)On the geometry of gradient Einstein-type manifolds Pac. J. Math. 286 39-67
  • [9] Tran H(2008)Ricci solitons: the equation point of view Manuscr. Math. 127 345-367
  • [10] Catino G(2011)Rigidity of shrinking Ricci solitons Math. Z. 269 461-466