Total Mutual-Visibility in Graphs with Emphasis on Lexicographic and Cartesian Products

被引:0
作者
Dorota Kuziak
Juan A. Rodríguez-Velázquez
机构
[1] Universidad de Cádiz,Departamento de Estadística e Investigación Operativa
[2] Universitat Rovira i Virgili,Departament d’Enginyeria Informàtica i Matemàtiques
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2023年 / 46卷
关键词
Total mutual-visibility number; Total mutual-visibility set; Mutual-visibility; lexicographic product; Cartesian product; 05C12; 05C76;
D O I
暂无
中图分类号
学科分类号
摘要
Given a connected graph G, the total mutual-visibility number of G, denoted μt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _t(G)$$\end{document}, is the cardinality of a largest set S⊆V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G)$$\end{document} such that for every pair of vertices x,y∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y\in V(G)$$\end{document} there is a shortest x, y-path whose interior vertices are not contained in S. Several combinatorial properties, including bounds and closed formulae, for μt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _t(G)$$\end{document} are given in this article. Specifically, we give several bounds for μt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _t(G)$$\end{document} in terms of the diameter, order and/or connected domination number of G and show characterizations of the graphs achieving the limit values of some of these bounds. We also consider those vertices of a graph G that either belong to every total mutual-visibility set of G or does not belong to any of such sets, and deduce some consequences of these results. We determine the exact value of the total mutual-visibility number of lexicographic products in terms of the orders of the factors, and the total mutual-visibility number of the first factor in the product. Finally, we give some bounds and closed formulae for the total mutual-visibility number of Cartesian product graphs.
引用
收藏
相关论文
共 44 条
[1]  
Aljohani A(2018)Complete visibility for mobile robots with lights tolerating faults Int. J. Netw. Comput. 8 32-52
[2]  
Sharma G(2020)Optimum algorithm for the mutual visibility problem Lect. Notes Comput. Sci. 12049 31-42
[3]  
Bhagat S(2023)Variety of mutual-visibility problems in graphs Theoret. Comput. Sci. 974 392-418
[4]  
Cicerone S(2023)On the mutual-visibility in Cartesian products and in triangle-free graphs Appl. Math. Comput. 438 1199-1213
[5]  
Di Stefano G(2017)Mutual visibility by luminous robots without collisions Inf. Comput. 254 1-15
[6]  
Drožđek L(2022)Mutual visibility in graphs Appl. Math. Comput. 419 177-187
[7]  
Hedžet J(2021)The general position problem on Kneser graphs and on some graph operations Discuss. Math. Graph Theory 41 123-126
[8]  
Klavžar S(2021)A Steiner general position problem in graph theory Comput. Appl. Math. 40 112-280
[9]  
Yero IG(2018)A general position problem in graph theory Bull. Aust. Math. Soc. 98 273-10
[10]  
Cicerone S(2021)On general position sets in Cartesian products Results Math. 76 1-143