Malmquist theorem for solutions of differential equations in a neighborhood of a logarithmic singular point

被引:0
作者
A. A. Mokhon’ko
机构
[1] Shevchenko Kiev National University,
关键词
Differential Equation; Singular Point; Logarithmic Singularity; Meromorphic Solution; Malmquist Theorem;
D O I
10.1007/s11253-005-0004-2
中图分类号
学科分类号
摘要
The Malmquist theorem (1913) on the growth of meromorphic solutions of the differential equation f ′ = P(z,f) / Q(z,f), where P(z,f) and Q(z,f) are polynomials in all variables, is proved for the case of meromorphic solutions with logarithmic singularity at infinity.
引用
收藏
页码:577 / 585
页数:8
相关论文
共 9 条
  • [1] Malmquist J.(1913)Sur les fonctions á un nombre fini de branches définies par les équations différentielles du premier ordre Acta Math. 36 297-343
  • [2] Yosida K.(1933)A generalization of a Malmquist’s theorem Jpn. J. Math. 9 239-256
  • [3] Mokhon’ko A. Z.(1981)A field of algebroidal functions and estimates of their Nevanlinna characteristics Sib. Mat. Zh. 22 214-218
  • [4] Mokhon’ko A. Z.(2000)On order of growth of analytic solutions for algebraic differential equations having logarithmic singularity Mat. Stud. 13 203-218
  • [5] Mokhon’ko V. D.(1975)On the growth rate of solutions of algebraic differential equations in angular domains Differents. Uravn. 11 1568-1574
  • [6] Gold’berg A. A.(1975)Nevanlinna lemma on the logarithmic derivative of a meromorphic function Mat. Zametki 17 525-529
  • [7] Mokhon’ko A. Z.(1992)On meromorphic solutions of algebraic differential equations in angular domains Ukr. Mat. Zh. 44 514-523
  • [8] Gol’dberg A. A.(undefined)undefined undefined undefined undefined-undefined
  • [9] Mokhon’ko A. Z.(undefined)undefined undefined undefined undefined-undefined