Parameterized Complexity of Minimum Membership Dominating Set

被引:0
|
作者
Akanksha Agrawal
Pratibha Choudhary
N. S. Narayanaswamy
K. K. Nisha
Vijayaragunathan Ramamoorthi
机构
[1] IIT Madras,Department of Computer Science and Engineering
[2] Czech Technical University in Prague,Faculty of Informatics
来源
Algorithmica | 2023年 / 85卷
关键词
Dominating set; Pathwidth; Vertex cover number; FPT; Split graphs; Planar bipartite graphs;
D O I
暂无
中图分类号
学科分类号
摘要
Given a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} and an integer k, the Minimum Membership Dominating Set (MMDS) problem seeks to find a dominating set S⊆V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subseteq V$$\end{document} of G such that for each v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in V$$\end{document}, |N[v]∩S|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vert N[v] \cap S\vert $$\end{document} is at most k. We investigate the parameterized complexity of the problem and obtain the following results for the MMDS problem. First, we show that the MMDS problem is NP-hard even on planar bipartite graphs. Next, we show that the MMDS problem is W[1]-hard for the parameter pathwidth (and thus, for treewidth) of the input graph. Then, for split graphs, we show that the MMDS problem is W[2]-hard for the parameter k. Further, we complement the pathwidth lower bound by an FPT algorithm when parameterized by the vertex cover number of input graph. In particular, we design a 2O(vc)|V|O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{{\mathcal {O}}({\textbf {v}}{} {\textbf {c}})} \vert V\vert ^{{\mathcal {O}}(1)}$$\end{document} time algorithm for the MMDS problem where vc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{vc}$$\end{document} is the vertex cover number of the input graph. Finally, we show that the running time lower bound based on ETH is tight for the vertex cover parameter.
引用
收藏
页码:3430 / 3452
页数:22
相关论文
共 50 条
  • [41] Towards efficient local search for the minimum total dominating set problem
    Shuli Hu
    Huan Liu
    Yupan Wang
    Ruizhi Li
    Minghao Yin
    Nan Yang
    Applied Intelligence, 2021, 51 : 8753 - 8767
  • [42] The Minimum Weight Dominating Set Problem under Hybrid Uncertain Environments
    Wang, Chenyin
    Luo, Dongling
    Zeng, Mowei
    Yi, Yang
    Zhou, Xiaocong
    ADVANCED DEVELOPMENT IN AUTOMATION, MATERIALS AND MANUFACTURING, 2014, 624 : 545 - 548
  • [43] Solving Minimum Dominating Set in Multiplex Networks Using Learning Automata
    Khomami, Mohammad Mehdi Daliri
    Rezvanian, Alireza
    Saghiri, Ali Mohammad
    Meybodi, Mohammad Reza
    2021 26TH INTERNATIONAL COMPUTER CONFERENCE, COMPUTER SOCIETY OF IRAN (CSICC), 2021,
  • [44] Dynamic ((1+ε) ln n)-Approximation Algorithms for Minimum Set Cover and Dominating Set
    Solomon, Shay
    Uzrad, Amitai
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 1187 - 1200
  • [45] Approximating the Minimum Connected Dominating Set in Stochastic Graphs Based on Learning Automata
    Torkestani, J. Akbari
    Meybodi, M. R.
    2009 INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT AND ENGINEERING, PROCEEDINGS, 2009, : 672 - +
  • [46] Minimum connected dominating set based RSU allocation for smartCloud vehicles in VANET
    Chinnasamy, A.
    Sivakumar, B.
    Selvakumari, P.
    Suresh, A.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 5): : 12795 - 12804
  • [47] A local approximation algorithm for minimum dominating set problem in anonymous planar networks
    Wojciech Wawrzyniak
    Distributed Computing, 2015, 28 : 321 - 331
  • [49] (6+ε)-approximation for minimum weight dominating set in unit disk graphs
    Gao, Xiaofeng
    Huang, Yaochun
    Zhang, Zhao
    Wu, Weili
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2008, 5092 : 551 - +