Parameterized Complexity of Minimum Membership Dominating Set

被引:0
|
作者
Akanksha Agrawal
Pratibha Choudhary
N. S. Narayanaswamy
K. K. Nisha
Vijayaragunathan Ramamoorthi
机构
[1] IIT Madras,Department of Computer Science and Engineering
[2] Czech Technical University in Prague,Faculty of Informatics
来源
Algorithmica | 2023年 / 85卷
关键词
Dominating set; Pathwidth; Vertex cover number; FPT; Split graphs; Planar bipartite graphs;
D O I
暂无
中图分类号
学科分类号
摘要
Given a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} and an integer k, the Minimum Membership Dominating Set (MMDS) problem seeks to find a dominating set S⊆V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subseteq V$$\end{document} of G such that for each v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in V$$\end{document}, |N[v]∩S|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vert N[v] \cap S\vert $$\end{document} is at most k. We investigate the parameterized complexity of the problem and obtain the following results for the MMDS problem. First, we show that the MMDS problem is NP-hard even on planar bipartite graphs. Next, we show that the MMDS problem is W[1]-hard for the parameter pathwidth (and thus, for treewidth) of the input graph. Then, for split graphs, we show that the MMDS problem is W[2]-hard for the parameter k. Further, we complement the pathwidth lower bound by an FPT algorithm when parameterized by the vertex cover number of input graph. In particular, we design a 2O(vc)|V|O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{{\mathcal {O}}({\textbf {v}}{} {\textbf {c}})} \vert V\vert ^{{\mathcal {O}}(1)}$$\end{document} time algorithm for the MMDS problem where vc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{vc}$$\end{document} is the vertex cover number of the input graph. Finally, we show that the running time lower bound based on ETH is tight for the vertex cover parameter.
引用
收藏
页码:3430 / 3452
页数:22
相关论文
共 50 条
  • [31] Parameterized complexity of fair feedback vertex set problem
    Kanesh, Lawqueen
    Maity, Soumen
    Muluk, Komal
    Saurabh, Saket
    THEORETICAL COMPUTER SCIENCE, 2021, 867 : 1 - 12
  • [32] Optimal Metric Search Is Equivalent to the Minimum Dominating Set Problem
    Hetland, Magnus Lie
    SIMILARITY SEARCH AND APPLICATIONS, SISAP 2020, 2020, 12440 : 111 - 125
  • [33] PTAS for the minimum weighted dominating set in growth bounded graphs
    Zhong Wang
    Wei Wang
    Joon-Mo Kim
    Bhavani Thuraisingham
    Weili Wu
    Journal of Global Optimization, 2012, 54 : 641 - 648
  • [34] PTAS for the minimum weighted dominating set in growth bounded graphs
    Wang, Zhong
    Wang, Wei
    Kim, Joon-Mo
    Thuraisingham, Bhavani
    Wu, Weili
    JOURNAL OF GLOBAL OPTIMIZATION, 2012, 54 (03) : 641 - 648
  • [35] A polynomial-time approximation to a minimum dominating set in a graph
    Mira, Frank angel Hernandez
    Inza, Ernesto Parra
    Almira, Jose Maria Sigarreta
    Vakhania, Nodari
    THEORETICAL COMPUTER SCIENCE, 2022, 930 : 142 - 156
  • [36] A complexity dichotomy and a new boundary class for the dominating set problem
    Malyshev, D. S.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (01) : 226 - 243
  • [37] A complexity dichotomy and a new boundary class for the dominating set problem
    D. S. Malyshev
    Journal of Combinatorial Optimization, 2016, 32 : 226 - 243
  • [38] Towards efficient local search for the minimum total dominating set problem
    Hu, Shuli
    Liu, Huan
    Wang, Yupan
    Li, Ruizhi
    Yin, Minghao
    Yang, Nan
    APPLIED INTELLIGENCE, 2021, 51 (12) : 8753 - 8767
  • [39] A hybrid evolutionary algorithm with guided mutation for minimum weight dominating set
    Sachchida Nand Chaurasia
    Alok Singh
    Applied Intelligence, 2015, 43 : 512 - 529
  • [40] A hybrid evolutionary algorithm with guided mutation for minimum weight dominating set
    Chaurasia, Sachchida Nand
    Singh, Alok
    APPLIED INTELLIGENCE, 2015, 43 (03) : 512 - 529