Parameterized Complexity of Minimum Membership Dominating Set

被引:0
|
作者
Akanksha Agrawal
Pratibha Choudhary
N. S. Narayanaswamy
K. K. Nisha
Vijayaragunathan Ramamoorthi
机构
[1] IIT Madras,Department of Computer Science and Engineering
[2] Czech Technical University in Prague,Faculty of Informatics
来源
Algorithmica | 2023年 / 85卷
关键词
Dominating set; Pathwidth; Vertex cover number; FPT; Split graphs; Planar bipartite graphs;
D O I
暂无
中图分类号
学科分类号
摘要
Given a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} and an integer k, the Minimum Membership Dominating Set (MMDS) problem seeks to find a dominating set S⊆V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subseteq V$$\end{document} of G such that for each v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in V$$\end{document}, |N[v]∩S|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vert N[v] \cap S\vert $$\end{document} is at most k. We investigate the parameterized complexity of the problem and obtain the following results for the MMDS problem. First, we show that the MMDS problem is NP-hard even on planar bipartite graphs. Next, we show that the MMDS problem is W[1]-hard for the parameter pathwidth (and thus, for treewidth) of the input graph. Then, for split graphs, we show that the MMDS problem is W[2]-hard for the parameter k. Further, we complement the pathwidth lower bound by an FPT algorithm when parameterized by the vertex cover number of input graph. In particular, we design a 2O(vc)|V|O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{{\mathcal {O}}({\textbf {v}}{} {\textbf {c}})} \vert V\vert ^{{\mathcal {O}}(1)}$$\end{document} time algorithm for the MMDS problem where vc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{vc}$$\end{document} is the vertex cover number of the input graph. Finally, we show that the running time lower bound based on ETH is tight for the vertex cover parameter.
引用
收藏
页码:3430 / 3452
页数:22
相关论文
共 50 条
  • [21] Complete Complexity Dichotomies for the Dominating Set Problem
    G. S. Dakhno
    D. S. Malyshev
    Mathematical Notes, 2025, 117 (1) : 62 - 74
  • [22] On the advice complexity of the online dominating set problem
    Bockenhauer, Hans-Joachim
    Hromkovicc, Juraj
    Krug, Sacha
    Unger, Walter
    THEORETICAL COMPUTER SCIENCE, 2021, 862 : 81 - 96
  • [23] On the complexity of fixed parameter clique and dominating set
    Eisenbrand, F
    Grandoni, F
    THEORETICAL COMPUTER SCIENCE, 2004, 326 (1-3) : 57 - 67
  • [24] Parameterized algorithms for Steiner tree and (connected) dominating set on path graphs
    de Figueiredo, Celina M. H.
    Lopes, Raul
    de Melo, Alexsander A.
    Silva, Ana
    NETWORKS, 2024, 84 (02) : 132 - 147
  • [25] Approximating the minimum independent dominating set in perturbed graphs
    Tong, Weitian
    Goebel, Randy
    Lin, Guohui
    THEORETICAL COMPUTER SCIENCE, 2014, 554 : 275 - 282
  • [26] A Study on the Minimum Dominating Set Problem Approximation in Parallel
    Gambhir, Mahak
    Kothapalli, Kishore
    2017 TENTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3), 2017, : 13 - 18
  • [27] Parallel Genetic Algorithm for Minimum Dominating Set Problem
    Cu Nguyen Giap
    Dinh Thi Ha
    2014 INTERNATIONAL CONFERENCE ON COMPUTING, MANAGEMENT AND TELECOMMUNICATIONS (COMMANTEL), 2014, : 165 - 169
  • [28] Minimum Connected Dominating set for Certain Circulant Networks
    Parthiban, N.
    Rajasingh, Indra
    Rajan, R. Sundara
    3RD INTERNATIONAL CONFERENCE ON RECENT TRENDS IN COMPUTING 2015 (ICRTC-2015), 2015, 57 : 587 - 591
  • [29] Hybrid metaheuristic algorithms for minimum weight dominating set
    Potluri, Anupama
    Singh, Alok
    APPLIED SOFT COMPUTING, 2013, 13 (01) : 76 - 88
  • [30] Vertices contained in every minimum dominating set of a tree
    Mynhardt, CM
    JOURNAL OF GRAPH THEORY, 1999, 31 (03) : 163 - 177