Parameterized Complexity of Minimum Membership Dominating Set

被引:0
作者
Akanksha Agrawal
Pratibha Choudhary
N. S. Narayanaswamy
K. K. Nisha
Vijayaragunathan Ramamoorthi
机构
[1] IIT Madras,Department of Computer Science and Engineering
[2] Czech Technical University in Prague,Faculty of Informatics
来源
Algorithmica | 2023年 / 85卷
关键词
Dominating set; Pathwidth; Vertex cover number; FPT; Split graphs; Planar bipartite graphs;
D O I
暂无
中图分类号
学科分类号
摘要
Given a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} and an integer k, the Minimum Membership Dominating Set (MMDS) problem seeks to find a dominating set S⊆V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subseteq V$$\end{document} of G such that for each v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in V$$\end{document}, |N[v]∩S|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vert N[v] \cap S\vert $$\end{document} is at most k. We investigate the parameterized complexity of the problem and obtain the following results for the MMDS problem. First, we show that the MMDS problem is NP-hard even on planar bipartite graphs. Next, we show that the MMDS problem is W[1]-hard for the parameter pathwidth (and thus, for treewidth) of the input graph. Then, for split graphs, we show that the MMDS problem is W[2]-hard for the parameter k. Further, we complement the pathwidth lower bound by an FPT algorithm when parameterized by the vertex cover number of input graph. In particular, we design a 2O(vc)|V|O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{{\mathcal {O}}({\textbf {v}}{} {\textbf {c}})} \vert V\vert ^{{\mathcal {O}}(1)}$$\end{document} time algorithm for the MMDS problem where vc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{vc}$$\end{document} is the vertex cover number of the input graph. Finally, we show that the running time lower bound based on ETH is tight for the vertex cover parameter.
引用
收藏
页码:3430 / 3452
页数:22
相关论文
共 26 条
[11]  
Xia B(2020)On the parameterized complexity of [1, j]-domination problems Theor. Comput. Sci. 804 207-218
[12]  
Zhou S(2008)Minimum-weight triangulation is np-hard J. ACM 55 11-11129
[13]  
Kratochvíl J(undefined)undefined undefined undefined undefined-undefined
[14]  
Mollard M(undefined)undefined undefined undefined undefined-undefined
[15]  
Cesati M(undefined)undefined undefined undefined undefined-undefined
[16]  
Telle JA(undefined)undefined undefined undefined undefined-undefined
[17]  
Chellali M(undefined)undefined undefined undefined undefined-undefined
[18]  
Haynes TW(undefined)undefined undefined undefined undefined-undefined
[19]  
Hedetniemi ST(undefined)undefined undefined undefined undefined-undefined
[20]  
McRae AA(undefined)undefined undefined undefined undefined-undefined