The electrochemical performance of AB3-type hydrogen storage alloy as anode material for the nickel metal hydride accumulators

被引:1
作者
Yassine Ben Belgacem
Chokri Khaldi
Jilani Lamloumi
Hisasi Takenouti
机构
[1] Université de Tunis,Equipe des Hydrures Métalliques, LMMP, ENSIT
[2] Université de Tunis El Manar,Faculté des Sciences de Tunis
[3] Sorbonne Universités,Laboratoire Interfaces et Systèmes Electrochimiques (LISE)
[4] LISE,undefined
[5] CNRS,undefined
来源
Journal of Solid State Electrochemistry | 2016年 / 20卷
关键词
Electrochemical properties; Hydrogen reactions; Activation energy; High-rate discharge ability; Enthalpy and entropy formation;
D O I
暂无
中图分类号
学科分类号
摘要
For the purpose of lowering the cost of metal hydride electrode, the La of LaY2Ni9 electrode was replaced by Ce. The electrochemical performances of the CeY2Ni9 negative electrode, at a room and different temperatures, were compared with the parent alloy LaY2Ni9. At room temperature during a long cycling, the evolution of the electrochemical capacity—the diffusivity indicator (DHa2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{D_{\mathrm{H}}}{a^2} $$\end{document})—the exchange current density, and the equilibrium potential were determined. At different temperatures, the electrochemical characterization of this alloy allowed the estimation of the enthalpy, the entropy, and the activation energy of the hydride formation. The evolution of the high-rate dischargeability was also evaluated at different temperatures. Compared with the parent LaY2Ni9 alloy, CeY2Ni9 exhibits an easy activation and good reaction reversibility. This alloy also conserves a good lifetime during a long-term cycling. A lower activation energy determined for this alloy corresponds to an easy absorption of hydrogen into this new alloy.
引用
收藏
页码:1949 / 1959
页数:10
相关论文
共 381 条
[1]  
Feng F(2001)ZhangY, Sun DL, Song XY, Sun LX, Xu F Int J Hydrog Energy 26 725-734
[2]  
Geng M(2001)Zhao M J Power Sources 102 97-104
[3]  
Northwood DO(1994)ChengY, Liang F, Sun L, Yin D, Yaoming Wu Y, Wang L J Power Sources 47 261-275
[4]  
Soria ML(2001)Delaplane RG J Power Sources 96 85-89
[5]  
Chacon J(2001)undefined Appl Phys A Mater Sci Process 72 225-238
[6]  
Hernandez JC(2007)undefined General Chem 77 790-796
[7]  
Anani A(2011)undefined J Mater Chem 21 4743-4755
[8]  
Visintin A(2007)undefined J Power Sources 165 544-551
[9]  
Petrov K(2008)undefined Nature 451 652-4301
[10]  
Srinivasan S(2004)undefined Chem Rev 104 4271-4608