On the diophantine equation X2 − (1 + a2)Y4 = −2a

被引:0
作者
PingZhi Yuan
ZhongFeng Zhang
机构
[1] South China Normal University,School of Mathematics
[2] Sun Yat-Sen University,School of Mathematics & Computational Science
来源
Science China Mathematics | 2010年 / 53卷
关键词
algebraic approximations; continued fractions; elliptic curves; quartic equations; 11B39; 11D41;
D O I
暂无
中图分类号
学科分类号
摘要
Let a ⩾ 1 be an integer. In this paper, we will prove the equation in the title has at most three positive integer solutions.
引用
收藏
页码:2143 / 2158
页数:15
相关论文
共 50 条
[31]   Polynomial Pell equations P (x)2 - (x2m + ax plus b) Q (x)2=1 and associated hyperelliptic curves [J].
Jedrzejak, Tomasz .
JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2019, 34 (02) :263-269
[32]   Generators for the elliptic curve y2 = x3 - nx [J].
Fujita, Yasutsugu ;
Terai, Nobuhiro .
DIOPHANTINE ANALYSIS AND RELATED FIELDS 2010, 2010, 1264 :1-+
[33]   Integral points on the elliptic curve y2=x3+27x−62 [J].
Olcay Karaatlı ;
Refik Keskin .
Journal of Inequalities and Applications, 2013 (1)
[34]   Integral points on the elliptic curve y2 = x3+27x-62 [J].
Karaatli, Olcay ;
Keskin, Refik .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[35]   Explicit t-expansions for the elliptic curve y2=4(x3 + Ax plus B) [J].
Yasuda, Seidai .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2013, 89 (09) :123-127
[36]   Generators for the elliptic curve y2=x3-nx II [J].
Fujita, Yasutsugu ;
Terai, Nobuhiro .
DIOPHANTINE ANALYSIS AND RELATED FIELDS 2011 (DARF 2011), 2011, 1385 :32-+
[37]   3-Selmer groups for curves y2 = x3 + a [J].
Andrea Bandini .
Czechoslovak Mathematical Journal, 2008, 58 :429-445
[38]   ON THE ELLIPTIC CURVES OF THE FORM y2 = x3-3px [J].
Daghigh, H. ;
Didari, S. .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (05) :1119-1133
[39]   3-Selmer groups for curves y2=x3+a [J].
Bandini, Andrea .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (02) :429-445
[40]   RANKS OF SOME ELLIPTIC CURVES y2 = x3 ± Apx [J].
Kim, Shin-Wook .
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2021, 51 (02) :223-248