On the diophantine equation X2 − (1 + a2)Y4 = −2a

被引:0
|
作者
PingZhi Yuan
ZhongFeng Zhang
机构
[1] South China Normal University,School of Mathematics
[2] Sun Yat-Sen University,School of Mathematics & Computational Science
来源
Science China Mathematics | 2010年 / 53卷
关键词
algebraic approximations; continued fractions; elliptic curves; quartic equations; 11B39; 11D41;
D O I
暂无
中图分类号
学科分类号
摘要
Let a ⩾ 1 be an integer. In this paper, we will prove the equation in the title has at most three positive integer solutions.
引用
收藏
页码:2143 / 2158
页数:15
相关论文
共 50 条
  • [1] On the diophantine equation X2-(1+a2)Y4=-2a
    Yuan PingZhi
    Zhang ZhongFeng
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (08) : 2143 - 2158
  • [2] On the diophantine equation X2-(1+a2)Y4 =-2a
    YUAN PingZhi 1 & ZHANG ZhongFeng 2 1 School of Mathematics
    2 School of Mathematics & Computational Science
    Science China(Mathematics), 2010, 53 (08) : 2143 - 2158
  • [3] ON THE DIOPHANTINE INEQUALITY |X2 - cXY2 + Y4| ≤ c+2
    He, Bo
    Pink, Istvan
    Pinter, Akos
    Togbe, Alain
    GLASNIK MATEMATICKI, 2013, 48 (02) : 291 - 299
  • [4] Solving the Diophantine equation y2 = x(x2 - n2)
    Draziotis, Konstantinos
    Poulakis, Dimitrios
    JOURNAL OF NUMBER THEORY, 2009, 129 (01) : 102 - 121
  • [5] ON THE DIOPHANTINE EQUATION h(a)x2
    Berbara, Nacira
    Kihel, Omar
    Mavecha, Sukrawan
    Midgley, Joel
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2019, 61 (02) : 201 - 206
  • [6] On the Diophantine equation X2-(22m+1)Y4=-22m
    Stoll, Michael
    Walsh, P. G.
    Yuan, Pingzhi
    ACTA ARITHMETICA, 2009, 139 (01) : 57 - 63
  • [7] A REFINED MODULAR APPROACH TO THE DIOPHANTINE EQUATION x2 + y2n = z3
    Dahmen, Sander R.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (05) : 1303 - 1316
  • [8] On the Diophantine equation z2 = f(x)2 ± f(y)2
    Ulas, Maciej
    Togbe, Alain
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2010, 76 (1-2): : 183 - 201
  • [9] The equation x1/x2 + x2/x3 + x3/x4 + x4/x1 = n
    Dofs, Erik
    Nguyen Xuan Tho
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (01) : 75 - 87
  • [10] ON THE DIOPHANTINE EQUATION X-2 - (p(2m)
    He, Bo
    Togbe, Alain
    Yuan, Pingzhi
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2010, 43 (01) : 31 - 44