A superfine eutectic microstructure and the mechanical properties of CoCrFeNiMox high-entropy alloys

被引:0
|
作者
Yong Guo
Liang Liu
Yue Zhang
Jingang Qi
Bing Wang
Zuofu Zhao
Jian Shang
Jun Xiang
机构
[1] Liaoning University of Technology,Department of Materials Science and Engineering
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A series of CoCrFeNiMox (x = 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2) high-entropy alloys were designed to develop a eutectic high-entropy alloy system and to acquire a superfine eutectic structure. The results show that for the CoCrFeNiMox alloys, with the increase of Mo content from 0.2 to 1.2, the microstructures shift from a typical dendrite structure to a hypoeutectic microstructure (x = 0.6), and then to a fully eutectic microstructure (x = 0.8) with a lamellar spacing only 110 nm, and finally culminate in the hypereutectic structure (x = 1.0, x = 1.2). The XRD results show that CoCrFeNiMox alloys have a single FCC phase when x is 0.2 or 0.4. When Mo content is over 0.6, it begins to separate Cr9Mo21Ni20 intermetallic compounds. The hardness of the CoCrFeNiMox alloys is increasing significantly from 172.8 to 763.7 HV with the increase of Mo content. Meanwhile, the fracture strength increased but the ductility decreases. Among these alloys, the CoCrFeNiMo0.6 alloy shows excellent integrated mechanical properties of compressive fracture strength and strain, which are 2051 Mpa and 23%, respectively.
引用
收藏
页码:3258 / 3265
页数:7
相关论文
共 50 条
  • [21] Microstructure, mechanical properties and magnetic properties of FeCoNiCuTiSix high-entropy alloys
    QU HuaiZhi
    GONG MingLong
    LIU FengFang
    GAO BingYu
    BAI Jing
    GAO QiuZhi
    LI Song
    Science China(Technological Sciences), 2020, (03) : 459 - 466
  • [22] Microstructure, mechanical properties and magnetic properties of FeCoNiCuTiSix high-entropy alloys
    HuaiZhi Qu
    MingLong Gong
    FengFang Liu
    BingYu Gao
    Jing Bai
    QiuZhi Gao
    Song Li
    Science China Technological Sciences, 2020, 63 : 459 - 466
  • [23] Microstructure, mechanical properties and magnetic properties of FeCoNiCuTiSix high-entropy alloys
    Qu, HuaiZhi
    Gong, MingLong
    Liu, FengFang
    Gao, BingYu
    Bai, Jing
    Gao, QiuZhi
    Li, Song
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (03) : 459 - 466
  • [24] The Microstructure and Mechanical Properties of Refractory High-Entropy Alloys with High Plasticity
    Chen, Yiwen
    Li, Yunkai
    Cheng, Xingwang
    Wu, Chao
    Cheng, Bo
    Xu, Ziqi
    MATERIALS, 2018, 11 (02)
  • [25] Microstructure, mechanical and corrosion properties of near-eutectic AlCoaCrbFeNi2.1 high-entropy alloys
    Yang, Ke
    Duan, Jingmin
    Yuan, Jiongpei
    Zhang, Peng
    Dong, Yong
    MATERIALS TODAY COMMUNICATIONS, 2025, 42
  • [26] Microstructure and Mechanical Behavior of High-Entropy Alloys
    Joseph J. Licavoli
    Michael C. Gao
    John S. Sears
    Paul D. Jablonski
    Jeffrey A. Hawk
    Journal of Materials Engineering and Performance, 2015, 24 : 3685 - 3698
  • [27] Microstructure and Mechanical Behavior of High-Entropy Alloys
    Licavoli, Joseph J.
    Gao, Michael C.
    Sears, John S.
    Jablonski, Paul D.
    Hawk, Jeffrey A.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2015, 24 (10) : 3685 - 3698
  • [28] Exploring Zr Influence on Microstructure and Mechanical Property in FeCoNiCrCuZr Eutectic High-Entropy Alloys
    Dewangan, Sheetal Kumar
    Jain, Reliance
    Paswan, Manikant
    Patel, Arvind
    Samal, Sumanta
    Kumar, Vinod
    Ahn, Byungmin
    METALS AND MATERIALS INTERNATIONAL, 2024, 30 (12) : 3339 - 3348
  • [29] Directionally solidified NiCoCrFeAlW eutectic high-entropy alloy: Microstructure and mechanical properties
    Bai, Xiaotian
    Feng, Xiaoning
    Peng, Peng
    Xu, Yuanli
    Zhang, Xudong
    Kou, Xinli
    Ma, Zhikun
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 4821 - 4830
  • [30] Microstructure characteristics and mechanical properties of NbMoTiVWSix refractory high-entropy alloys
    Qin Xu
    Qi Wang
    De-zhi Chen
    Yi-ang Fu
    Qing-sheng Shi
    Ya-jun Yin
    Shu-yan Zhang
    ChinaFoundry, 2022, 19 (06) : 495 - 502