Purpose of review: The ripples of artificial intelligence are being felt in various sectors of human life. Machine learning, a subset of artificial intelligence, extracts information from large databases of information and is gaining traction in various fields of cardiology. In this review, we highlight noteworthy examples of machine learning utilization in echocardiography, nuclear cardiology, computed tomography, and magnetic resonance imaging over the past year. Recent findings: In the past year, machine learning (ML) has expanded its boundaries in cardiology with several positive results. Some studies have integrated clinical and imaging information to further augment the accuracy of these ML algorithms. All the studies mentioned in this review have clearly demonstrated superior results of ML in relation to conventional approaches for identifying obstructions or predicting major adverse events in reference to conventional approaches. Summary: As the influx of data arriving from gradually evolving technologies in health care and wearable devices continues to be more complex, ML may serve as the bridge to transcend the gap between health care and patients in the future. In order to facilitate a seamless transition between both, a few issues must be resolved for a successful implementation of ML in health care. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.