Fluorescence Studies of Melanin by Stepwise Two-Photon Femtosecond Laser Excitation

被引:0
作者
Klaus Teuchner
Jürgen Ehlert
Wolfgang Freyer
Dieter Leupold
Peter Altmeyer
Markus Stücker
Klaus Hoffmann
机构
[1] Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie,Department of Dermatology, St. Josef Hospital
[2] Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie,undefined
[3] Ruhr-University,undefined
来源
Journal of Fluorescence | 2000年 / 10卷
关键词
Melanin; two-photon excited fluorescence; femtosecond laser excitation; malignant melanoma; skin cancer diagnostics;
D O I
暂无
中图分类号
学科分类号
摘要
Fluorescence of synthetic melanin in the solvents H2O, KOH, ethylene glycol monomethyl ether, and dimethyl sulfoxide has been excited by two-photon absorption at 800 nm, using 120-fs pulses with photon flux densities of ≥1027 cm−2.S−1. Compared to the one-photon (400-nm)-induced fluorescence of melanin, the overall spectral shape is red-shifted and shows a strong environment sensitivity. The decay of the two-photon-induced fluorescence (TPF) of melanin is three-exponential, with a shortest main component of about 200 ps. The results of the TPF studies in line with the unique light absorption property of melanin of a monotonously decreasing absorption spectrum between the near UV-region and the near infrared region indicate that the TPF is realized via stepwise absorption of two 800-nm photons. In comparison to the simultaneous absorption of two photons, the stepwise process needs lower photon flux densities to get a sufficient population of the fluorescent level. This stepwise process offers new possibilities of selective excitation of melanin in skin tissue in a spectral region where there is no overlap with any absorption of another fluorescent tissue component. The first results with different samples of excised human skin tissue (healthy, nevus cell nevi, malignant melanoma) suggest that fluorescence excited in this way yields information on malignant transformation.
引用
收藏
页码:275 / 275
相关论文
共 62 条
  • [1] Kollias N.(1991)undefined J. Photochem. Photobiol. B Biol. 9 135-160
  • [2] Sayre R. M.(1974)undefined Fortschr. Chem. Org. Naturst. 31 521-582
  • [3] Zeise L.(1985)undefined Tetrahedon Letters 26 2805-2808
  • [4] Chedekel M. R.(1990)undefined Anal. Chem. 62 949-956
  • [5] Swan G. A.(1996)undefined Cancer Surveys 26 71-87
  • [6] Napolitano A.(1996)undefined Photochem. Photobiol. (Spec. Iss.) 63 41S-42S
  • [7] Corradini M. G.(1991)undefined Pigment Cell Res. 4 172-179
  • [8] Prota G.(1994)undefined Lasers Med. Sci. 9 191-201
  • [9] Clark M. B.(1995)undefined J. Photochem. Photobiol. B Biol. 31 101-112
  • [10] Gardella J. A.(1995)undefined Melanoma Res. 5 211-216