On the importance of avoiding shortcuts in applying cognitive models to hierarchical data

被引:0
|
作者
Udo Boehm
Maarten Marsman
Dora Matzke
Eric-Jan Wagenmakers
机构
[1] University of Groningen,Department of Experimental Psychology
[2] University of Amsterdam,Department of Psychology
来源
Behavior Research Methods | 2018年 / 50卷
关键词
Cognitive models; Statistical test; Statistical errors; Bayes factor; Hierarchical Bayesian model;
D O I
暂无
中图分类号
学科分类号
摘要
Psychological experiments often yield data that are hierarchically structured. A number of popular shortcut strategies in cognitive modeling do not properly accommodate this structure and can result in biased conclusions. To gauge the severity of these biases, we conducted a simulation study for a two-group experiment. We first considered a modeling strategy that ignores the hierarchical data structure. In line with theoretical results, our simulations showed that Bayesian and frequentist methods that rely on this strategy are biased towards the null hypothesis. Secondly, we considered a modeling strategy that takes a two-step approach by first obtaining participant-level estimates from a hierarchical cognitive model and subsequently using these estimates in a follow-up statistical test. Methods that rely on this strategy are biased towards the alternative hypothesis. Only hierarchical models of the multilevel data lead to correct conclusions. Our results are particularly relevant for the use of hierarchical Bayesian parameter estimates in cognitive modeling.
引用
收藏
页码:1614 / 1631
页数:17
相关论文
共 50 条
  • [31] AVOIDING COLLISIONS IN CUCKER SMALE FLOCKING MODELS UNDER GROUP-HIERARCHICAL MULTILEADERSHIP
    Juang, Jong
    Liang, Yu-Hao
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (01) : 531 - 550
  • [32] Applying explainable artificial intelligence methods to models for diagnosing personal traits and cognitive abilities by social network data
    Panfilova, Anastasia S.
    Turdakov, Denis Yu.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [33] Avoiding overfitting of models: an application to research data on the Internet videos
    Jirousek, Radim
    Krejcova, Iva
    MATHEMATICAL METHODS IN ECONOMICS (MME 2017), 2017, : 289 - 294
  • [34] Hierarchical Bayes Models for Response Time Data
    Craigmile, Peter F.
    Peruggia, Mario
    Van Zandt, Trisha
    PSYCHOMETRIKA, 2010, 75 (04) : 613 - 632
  • [35] Analysis of longitudinal data with hierarchical linear models
    Goellner, Richard
    Gollwitzer, Mario
    Heider, Jens
    Zaby, Alexandra
    Schroeder, Annette
    ZEITSCHRIFT FUR KLINISCHE PSYCHOLOGIE UND PSYCHOTHERAPIE, 2010, 39 (03): : 179 - 188
  • [36] Analyzing 'omics data using hierarchical models
    Ji, Hongkai
    Liu, X. Shirley
    NATURE BIOTECHNOLOGY, 2010, 28 (04) : 337 - 340
  • [37] Learning deep autoregressive models for hierarchical data
    Andersson, Carl R.
    Wahlstrom, Niklas
    Schon, Thomas B.
    IFAC PAPERSONLINE, 2021, 54 (07): : 529 - 534
  • [38] Hierarchical Poisson models for spatial count data
    De Oliveira, Victor
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 122 : 393 - 408
  • [39] Hierarchical mixture models for biclustering in microarray data
    Martella, F.
    Alfo, M.
    Vichi, M.
    STATISTICAL MODELLING, 2011, 11 (06) : 489 - 505
  • [40] Fuzzy hierarchical models designed using data
    Sindelár, R
    Proceedings of the IASTED International Conference on Applied Simulation and Modelling, 2004, : 114 - 119