Two new embedded triply periodic minimal surfaces of genus 4

被引:0
作者
Daniel Freese
Matthias Weber
A. Thomas Yerger
Ramazan Yol
机构
[1] Indiana University,Department of Mathematics
来源
manuscripta mathematica | 2021年 / 166卷
关键词
49Q05;
D O I
暂无
中图分类号
学科分类号
摘要
We add two new 1-parameter families to the short list of known embedded triply periodic minimal surfaces of genus 4 in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}. Both surfaces can be tiled by minimal pentagons with two straight segments and three planar symmetry curves as boundary. In one case (which has the appearance of the CLP surface of Schwarz with an added handle) the two straight segments are parallel, while they are orthogonal in the second case. The second family has as one limit the Costa surface, showing that this limit can occur for triply periodic minimal surfaces. For the existence proof we solve the 1-dimensional period problem through a combination of an asymptotic analysis of the period integrals and geometric methods.
引用
收藏
页码:437 / 456
页数:19
相关论文
共 10 条
[1]  
Bastista VR(2003)A family of triply periodic costa surfaces Pac. J. Math. 212 171-191
[2]  
Callahan M(1989)Embedded minimal surfaces with an infinite number of ends Invent. Math. 96 459-505
[3]  
Hoffman D(1989)The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions Manuscr. Math. 64 291-357
[4]  
Meeks WH(1990)The theory of triply-periodic minimal surfaces Indiana Univ. Math. J. 39 877-936
[5]  
Karcher H(1996)Construction de surfaces minmales en recollant des surfaces de scherk Annals de l’Institut Fourier 46 1385-1442
[6]  
Meeks WH(2008)On the genus of triply periodic minimal surfaces J. Differ. Geom. 79 243-275
[7]  
Traizet M(2002)Teichmüller theory and handle addition for minimal surfaces Ann. Math. 156 713-795
[8]  
Traizet M(undefined)undefined undefined undefined undefined-undefined
[9]  
Weber M(undefined)undefined undefined undefined undefined-undefined
[10]  
Wolf M(undefined)undefined undefined undefined undefined-undefined