Markov chain Monte Carlo simulation of a Bayesian mixture model for gene network inference

被引:0
作者
Younhee Ko
Jaebum Kim
Sandra L. Rodriguez-Zas
机构
[1] Hankuk University of Foreign Studies,Division of Biomedical Engineering
[2] University of Illinois at Urbana-Champaign,Department of Animal Sciences
[3] University of Illinois at Urbana-Champaign,Department of Statistics
[4] Konkuk University,Department of Biomedical Science and Engineering
来源
Genes & Genomics | 2019年 / 41卷
关键词
Markov chain Monte Carlo; Bayesian mixture model; Gene network;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:547 / 555
页数:8
相关论文
共 118 条
[1]  
Bar-Joseph Z(2003)Computational discovery of gene modules and regulatory networks Nat Biotechnol 21 1337-1342
[2]  
Gerber GK(2005)MAFIA: a maximal frequent itemset algorithm IEEE Trans Knowl Data Eng 17 1490-1504
[3]  
Lee TI(2017)Gene regulatory network inference from single-cell data using multivariate information measures Cell Syst 5 251-267 e253
[4]  
Rinaldi NJ(2007)Clustering of genes into regulons using integrated modeling-COGRIM Genome Biol 8 R4-14868
[5]  
Yoo JY(2014)Augmenting microarray data with literature-based knowledge to enhance gene regulatory network inference PLoS Comput Biol 10 e1003666-620
[6]  
Robert F(1998)Cluster analysis and display of genome-wide expression patterns Proc Natl Acad Sci USA 95 14863-305
[7]  
Gordon DB(2000)Using Bayesian networks to analyze expression data J Comput Biol 7 601-109
[8]  
Fraenkel E(2008)Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move Mach Learn 71 265-95
[9]  
Jaakkola TS(2016)Gene regulatory network inference using PLS-based methods BMC Bioinform 17 545-292
[10]  
Young RA(1970)Monte Carlo sampling methods using Markov chains and their applications Biometrika 57 97-417