Galois theory for semiclones

被引:0
作者
Mike Behrisch
机构
[1] Technische Universität Wien,Institut für Computersprachen, (currently at Institut für Diskrete Mathematik und Geometrie)
来源
Algebra universalis | 2016年 / 76卷
关键词
Primary: 08A40; Secondary: 08A02; 08A99; iterative algebra; semiclone; relation pair clone; Galois theory;
D O I
暂无
中图分类号
学科分类号
摘要
We present a Galois theory connecting finitary operations with pairs of finitary relations, one of which is contained in the other. The Galois closed sets on both sides are characterised as locally closed subuniverses of the full iterative function algebra (semiclones) and relation pair clones, respectively. Moreover, we describe the modified closure operators if only functions and relation pairs of a certain bounded arity, respectively, are considered.
引用
收藏
页码:385 / 413
页数:28
相关论文
共 50 条
  • [41] The first lectures in Italy on Galois theory: Bologna, 1886-1887
    Martini, L
    HISTORIA MATHEMATICA, 1999, 26 (03) : 201 - 223
  • [42] Grothendieck’s extension of the fundamental theorem of galois theory in abstract categories
    S. H. Dalalyan
    Journal of Contemporary Mathematical Analysis, 2011, 46 : 48 - 55
  • [43] Operational identification of the complete class of superlative index numbers: An application of Galois theory
    Barnett, William A.
    Choi, Ki-Hong
    JOURNAL OF MATHEMATICAL ECONOMICS, 2008, 44 (7-8) : 603 - 612
  • [44] DESCENT FOR DIFFERENTIAL GALOIS THEORY OF DIFFERENCE EQUATIONS: CONFLUENCE AND q-DEPENDENCE
    Di Vizio, Lucia
    Hardouin, Charlotte
    PACIFIC JOURNAL OF MATHEMATICS, 2012, 256 (01) : 79 - 104
  • [45] Parametric Galois extensions
    Legrand, Francois
    JOURNAL OF ALGEBRA, 2015, 422 : 187 - 222
  • [46] Isoclinic Galois groups
    Schmid, Peter
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2015, 56 (02): : 763 - 767
  • [47] Induced Hopf Galois structures
    Crespo, Teresa
    Rio, Anna
    Vela, Montserrat
    JOURNAL OF ALGEBRA, 2016, 457 : 312 - 322
  • [48] Galois Extensions of Boolean Algebras
    Žikica Perović
    Order, 1998, 15 : 199 - 202
  • [49] Motivic homotopical Galois extensions
    Beaudry, Agnes
    Hess, Kathryn
    Keziorek, Magdalena
    Merling, Mona
    Stojanoska, Vesna
    TOPOLOGY AND ITS APPLICATIONS, 2018, 235 : 290 - 338
  • [50] GALOIS AUTOMORPHISMS OF A SYMMETRIC MEASUREMENT
    Appleby, D. M.
    Yadsan-Appleby, Hulya
    Zauner, Gerhard
    QUANTUM INFORMATION & COMPUTATION, 2013, 13 (7-8) : 672 - 720