On q-n-gonal Klein Surfaces

被引:0
作者
B. Estrada
R. A. Hidalgo
E. Martínez
机构
[1] UNED,Departamento de Matemáticas Fundamentales
[2] Universidad Técnica Federico Santa María,Departamento de Matemática
[3] UNED,Departamento de Matemáticas Fundamentales
来源
Acta Mathematica Sinica, English Series | 2007年 / 23卷
关键词
Klein surfaces; Riemann surfaces; automorphism groups; non-Euclidean crystallographic groups; 30F50; 30F10; 20H10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider proper Klein surfaces X of algebraic genus p ≥ 2, having an automorphism ϕ of prime order n with quotient space X/〈ϕ〉 of algebraic genus q. These Klein surfaces are called q-n-gonal surfaces and they are n-sheeted covers of surfaces of algebraic genus q. In this paper we extend the results of the already studied cases n ≤ 3 to this more general situation. Given p ≥ 2, we obtain, for each prime n, the (admissible) values q for which there exists a q-n-gonal surface of algebraic genus p. Furthermore, for each p and for each admissible q, it is possible to check all topological types of q-n-gonal surfaces with algebraic genus p. Several examples are given: q-pentagonal surfaces and q-n-gonal bordered surfaces with topological genus g = 0, 1.
引用
收藏
页码:1833 / 1844
页数:11
相关论文
共 10 条
  • [1] Wilkie undefined(1966)undefined Math. Z. 91 87-undefined
  • [2] Macbeath undefined(1967)undefined Can. J. Math. 19 1192-undefined
  • [3] May undefined(1977)undefined Glasgow Math. J. 18 1-undefined
  • [4] Bujalance undefined(1985)undefined Quart. J. Math. Oxford 36 141-undefined
  • [5] Bujalance undefined(1988)undefined Abh. Math. Sem Univ. Hamburg 58 95-undefined
  • [6] Estrada undefined(2001)undefined Glasgow Math. J. 43 343-undefined
  • [7] Hidalgo undefined(1989)undefined Notas de la Soc. Matemática de Chile 8 27-undefined
  • [8] Hidalgo undefined(1998)undefined Revista Proyecciones 17 77-undefined
  • [9] Estrada undefined(2002)undefined Israel J. Math. 131 361-undefined
  • [10] Bujalance undefined(1993)undefined J. of Algebra 159 436-undefined