Orbits of period two in the family of a multipoint variant of Chebyshev-Halley family

被引:0
作者
Beatriz Campos
Alicia Cordero
Juan R. Torregrosa
Pura Vindel
机构
[1] Universitat Jaume I,Instituto de Matemáticas y Aplicaciones de Castellón
[2] Universitat Politècnica de València,Instituto de Matemática Multidisciplinar
来源
Numerical Algorithms | 2016年 / 73卷
关键词
Iterative methods; Complex dynamics; Chebyshev-Halley’s family; 2-periodic orbits; 2-bulbs; 37F10; 65H05;
D O I
暂无
中图分类号
学科分类号
摘要
The study of the dynamical behaviour of the operators defined by iterative methods help us to know more deeply the regions where these methods have a good performance. In this paper, we follow the dynamical study of a multipoint variant of the known Chebyshev-Halley’s family, showing the existence of attractive periodic orbits of period 2 for some values of the parameter.
引用
收藏
页码:141 / 156
页数:15
相关论文
共 27 条
[1]  
Blanchard P(1984)Complex analytic dynamics on the Riemann sphere Bull. AMS 11 85-141
[2]  
Behl R(2013)Variants of Chebyshev’s method with optimal order of convergence Tamsui Oxf. J. Inf. Math. Sci. 29 39-53
[3]  
Kanwar V(2002)Graphic and numerical comparison between iterative methods Math. Intelligencer 24 37-46
[4]  
Varona JL(2004)Review of some iterative root-finding methods from a dynamical point of view Sci. Ser. A: Math. Sci. 10 3-35
[5]  
Amat S(2013)Chaos in King’s iterative family Appl. Math. Lett. 26 842-848
[6]  
Busquier S(2013)Dynamics of a family of Chebyshev-Halley type method Appl. Math. Comput. 219 8568-8583
[7]  
Plaza S(2010)Dynamics of a new family of iterative processes for quadratic polynomials J. Comput. Appl. Math. 233 2688-2695
[8]  
Cordero A(2014)Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equation App. Math. Comput. 227 567-592
[9]  
García-Maimó J(2011)Basin attractors for various methods Appl. Math. Comput. 218 2584-2599
[10]  
Torregrosa JR(1994)The dynamics of Newton’s method Proc. Symp. Appl. Math. 49 139-154