Invariant Elliptic Curves as Attractors in the Projective Plane

被引:0
|
作者
Johan Taflin
机构
[1] UPMC Univ. Paris 06,UMR 7586, Institut de Mathématiques de Jussieu
来源
关键词
Attractor; Lyapunov exponent; 32H50; 37D50; 37B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let f be a rational self-map of ℙ2 which leaves invariant an elliptic curve \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document} with strictly negative transverse Lyapunov exponent. We show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document} is an attractor, i.e. it possesses a dense orbit and its basin has strictly positive measure.
引用
收藏
页码:219 / 225
页数:6
相关论文
共 50 条