Approximation properties of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-Bernstein–Schurer–Stancu operators

被引:0
作者
Naim L. Braha
Toufik Mansour
机构
[1] University of Prishtina,Department of Mathematics and Computer Sciences
[2] Ilirias Research Institute,Department of Mathematics
[3] University of Haifa,undefined
关键词
-Bernstein–Schurer–Stancu operators; Modulus of continuity; Modulus of smoothness; Korovkin type theorem; Voronovskaya type theorem; Grüss–Voronovskaya type theorem; 40G10; 40C15; 41A36; 40A35;
D O I
10.1007/s41980-023-00811-6
中图分类号
学科分类号
摘要
In this paper, we define a new kind of the μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-Bernstein–Schurer–Stancu operators. For these operators, we prove uniform convergence and study their behavior using consideration modulus of continuity and smoothness. Moreover, we present the Korovkin type theorem, Voronovskaya type theorem, and Grüss–Voronovskaya type theorems.
引用
收藏
相关论文
共 34 条
[11]  
Braha NL(2022)-Bernstein operators via power summability method Math. Methods Appl. Sci. 45 97-49
[12]  
Mansour T(2015)Some properties of Kantorovich variant of Szász operators induced by multiple Sheffer polynomials Jaen J. Approx. 7 173-86
[13]  
Mursaleen M(1993)A new weighted statistical convergence and some associated approximation theorems Rev. Anal. Numér. Théor. Approx. 22 80-229
[14]  
Braha NL(2017)Grüss and Grü ss–Voronovskaya-type estimates for some Bernstein-type polynomials of real and complex variables Appl. Math. Comput. 302 43-44
[15]  
Mansour T(1913)Remarks on some quantitative Korovkin-type results Proc. Lond. Math. Soc. 13 1-undefined
[16]  
Mursaleen M(1963)Statistical weighted Notas Mat. Rio de Janeiro 39 211-undefined
[17]  
Acar T(1983)-summability and its applications to approximation theorems Calcolo 20 38-undefined
[18]  
Braha NL(1989)Einige Ungleichungen für zweímal differentzierban funktionen Vestn. Leningr. Univ. Math. 22 undefined-undefined
[19]  
Mansour T(undefined)Theory of interpolation of normed spaces undefined undefined undefined-undefined
[20]  
Braha NL(undefined)Approximation of function by means of a new generalized Bernstein operator undefined undefined undefined-undefined