Approximation properties of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-Bernstein–Schurer–Stancu operators

被引:0
作者
Naim L. Braha
Toufik Mansour
机构
[1] University of Prishtina,Department of Mathematics and Computer Sciences
[2] Ilirias Research Institute,Department of Mathematics
[3] University of Haifa,undefined
关键词
-Bernstein–Schurer–Stancu operators; Modulus of continuity; Modulus of smoothness; Korovkin type theorem; Voronovskaya type theorem; Grüss–Voronovskaya type theorem; 40G10; 40C15; 41A36; 40A35;
D O I
10.1007/s41980-023-00811-6
中图分类号
学科分类号
摘要
In this paper, we define a new kind of the μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-Bernstein–Schurer–Stancu operators. For these operators, we prove uniform convergence and study their behavior using consideration modulus of continuity and smoothness. Moreover, we present the Korovkin type theorem, Voronovskaya type theorem, and Grüss–Voronovskaya type theorems.
引用
收藏
相关论文
共 34 条
[1]  
Ansari KJ(2022)Numerical and theoretical approximation results for Schurer–Stancu operators with shape parameter Comput. Appl. Math. 41 181-446
[2]  
Őzger F(2016)Some weighted equi-statistical convergence and Korovkin type-theorem Results Math. 70 433-65
[3]  
Őzger ZŐ(2018)Some properties of new modified Szász–Mirakyan operators in polynomial weight spaces via power summability methods Bull. Math. Anal. Appl. 10 53-1426
[4]  
Braha NL(2019)Some properties of Baskakov–Schurer–Szász operators via power summability method Quaest. Math. 42 1411-90
[5]  
Braha NL(2020)Korovkin type theorem for Bernstein–Kantorovich operators via power summability method Anal. Math. Phys. 10 79-966
[6]  
Braha NL(2020)Some properties of modified Szász–Mirakyan operators in polynomial spaces via the power summability method J. Appl. Anal. 26 951-146
[7]  
Braha NL(2020)Korovkin type theorems and its applications via J. Math. Inequal. 14 3480607-5698
[8]  
Braha NL(2020)-statistically convergence J. Funct. Spaces 2020 125-122
[9]  
Braha NL(2020)Some properties of Kantorovich–Stancu-type generalization of Szász operators including Brenke-type polynomials via power series summability method J. Appl. Math. Comput. 65 13-176
[10]  
Loku V(2022)Some properties of Acta Appl. Math. 179 5682-96