Highly computationally efficient parameter estimation algorithms for a class of nonlinear multivariable systems by utilizing the state estimates

被引:0
作者
Ting Cui
Feng Ding
机构
[1] Jiangnan University,Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering
来源
Nonlinear Dynamics | 2023年 / 111卷
关键词
Input nonlinear model; Parameter estimation; Multivariable system; Over-parameterization; Coupling identification;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the parameter estimation issue for an input nonlinear multivariable state-space system. First, the canonical form of the input nonlinear multivariable state-space system is obtained through the linear transformation and the over-parameterization identification model of the considered system is derived. Second, by cutting down the redundant parameter estimates and extracting the unique parameter estimates from the parameter estimation vector in the least-squares identification method, we present an over-parameterization-based partially coupled average recursive extended least-squares parameter estimation algorithm to estimate the parameters. As for the unknown states in the parameter estimation algorithm, a new state estimator is designed to generate the state estimates. Third, in order to improve the computational efficiency of the parameter estimation algorithm, an over-parameterization-based multi-stage partially coupled average recursive extended least-squares algorithm is proposed. Finally, the computational efficiency analysis and the simulation examples are given to verify the effectiveness of the proposed algorithms.
引用
收藏
页码:8477 / 8496
页数:19
相关论文
共 222 条
  • [41] Xiong WL(2022)Consistent subspace identification of errors-in-variables Hammerstein systems IEEE Trans. Syst. Man Cybern. Syst. 29 333-338
  • [42] Alsaedi A(2021)Hierarchical estimation approach for RBF-AR models with regression weights based on the increasing data length IEEE Trans. Circuits Syst. II Express Briefs 193 971-987
  • [43] Xu L(2022)Optimal adaptive filtering algorithm by using the fractional-order derivative IEEE Signal Process. Lett. 141 7007-7025
  • [44] Song GL(2022)Water quality evolution mechanism modeling and health risk assessment based on stochastic hybrid dynamic systems Expert Syst. Appl. 129 1806-1821
  • [45] Ji Y(2022)Generalized maximum entropy based identification of graphical ARMA models Automatica 34 71-99
  • [46] Kang Z(2021)System identification approach for inverse optimal control of finite-horizon linear quadratic regulators Automatica 31 676-693
  • [47] Zhang C(1998)An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems Automatica 31 587-591
  • [48] Wang JW(2021)Three-stage forgetting factor stochastic gradient parameter estimation methods for a class of nonlinear systems Int. J. Robust Nonlinear Control 52 63-73
  • [49] Ji Y(2021)The data filtering based multiple-stage Levenberg–Marquardt algorithm for Hammerstein nonlinear systems Int. J. Robust Nonlinear Control 193 4420-4438
  • [50] Zhang C(2021)Decomposition strategy-based hierarchical least mean square algorithm for control systems from the impulse responses Int. J. Syst. Sci. 35 132-147