On p-Adic Integration in Spaces of Modular Forms and Its Applications

被引:0
作者
A. A. Panchishkin
机构
关键词
Modular Form;
D O I
10.1023/A:1022875813318
中图分类号
学科分类号
摘要
引用
收藏
页码:2357 / 2377
页数:20
相关论文
共 28 条
[11]  
Hida H.(1994)-functions at negative integers over totally real elds Ann. Inst. Fourier 44 1289-1322
[12]  
Hida H.(1978)The rationality of holomorphic Eisenstein series Invent. Math. 49 199-297
[13]  
Hida H.(1964)A J. Reine Angew. Math. 214/215 328-339
[14]  
Katz N. M.(1976)-adic measure attached to the zeta-functions associated with two elliptic modular forms. I Russ. Math. Surv. 31 5-57
[15]  
Kubota T.(1994)Galois representations into G Proc. Joint AMS Summer Conference on Motives, Seattle, July 20-August 2 1991 2 251-292
[16]  
Leopoldt H.-W.(1994)2 (Z Ann. Inst. Fourier 44 989-1023
[17]  
Manin Y. I.(1997)[[X ]])attached to ordinary cus Vietnam J. Math. 3 179-202
[18]  
Panchishkin A. A.(1973)forms Modular Functions of One Variable, Part III (Proc. Int. Summer School, Univ. Antwerp, 1972 350 191-268
[19]  
Panchishkin A. A.(1983)On Duke Math. J. 50 417-476
[20]  
Panchishkin A. A.(1995)-adic Invent. Math. 119 539-584