Global Higher Integrability of the Gradient of Weak Solutions of a Quasilinear Elliptic Equation

被引:0
作者
Abdeslem Lyaghfouri
机构
[1] Department of Mathematical Sciences,United Arab Emirates University
来源
Mediterranean Journal of Mathematics | 2022年 / 19卷
关键词
-Laplace operator; Orlicz–Sobolev space; gradient higher integrability; 35J62; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish global higher integrability of the gradient of the solution of the quasilinear elliptic equation ΔAu=diva(|F|)|F|F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _A u=\text {div}\left( \frac{a(|F|)}{|F|}F\right) $$\end{document} in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}, where ΔA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _A$$\end{document} is the so called A-Laplace operator.
引用
收藏
相关论文
共 13 条
[1]  
Alessandrini G(2001)Geometric properties of solutions to the anisotropic p-Laplace equation in dimension two Ann. Acad. Sci. Fenn. Math. 26 249-266
[2]  
Sigalotti M(2009)Hölder continuity of solutions to the Commun. Pure Appl. Anal. 8 1577-1583
[3]  
Challal S(2012)-Laplace equation involving measures Ann. Mat. 191 113-165
[4]  
Lyaghfouri A(1993)On the Am. J. Math. 115 1107-1134
[5]  
Challal S(1989)-obstacle problem and the Hausdorff measure of its free boundary Proc. Am. Math. Soc. 106 371-377
[6]  
Lyaghfouri A(1988)On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems Publ. Mat. 32 261-266
[7]  
Rodrigues JF(1983)A proof of the Fefferman–Stein–Strömberg inequality for the sharp maximal functions Stud. Math. 75 293-312
[8]  
DiBenedetto E(1991)Orlicz spaces for which the Hardy–Littlewood maximal operator is bounded Commun. Partial Differ. Equ. 16 311-361
[9]  
Manfredi J(undefined)Projections onto gradient fields and undefined undefined undefined-undefined
[10]  
Fujii N(undefined)-estimates for degenerate elliptic equations undefined undefined undefined-undefined