Sequentially Cohen–Macaulay bipartite graphs: vertex decomposability and regularity

被引:0
作者
Adam Van Tuyl
机构
[1] Lakehead University,Department of Mathematical Sciences
来源
Archiv der Mathematik | 2009年 / 93卷
关键词
13F55; 13D02; 05C75; Sequentially Cohen–Macaulay; Edge ideals; Bipartite graphs; Vertex decomposable; Shellable complex; Castelnuovo–Mumford regularity;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a bipartite graph with edge ideal I(G) whose quotient ring R/I(G) is sequentially Cohen–Macaulay. We prove: (1) the independence complex of G must be vertex decomposable, and (2) the Castelnuovo–Mumford regularity of R/I(G) can be determined from the invariants of G.
引用
收藏
页码:451 / 459
页数:8
相关论文
共 32 条
[11]  
Hà H.T.(2004)Dirac’s theorem on chordal graphs and Alexander duality European J. Combin. 25 949-454
[12]  
Francisco C.A.(2006)Characteristic-independence of Betti numbers of graph ideals J. Combin. Theory Ser. A 113 435-594
[13]  
Hà H.T.(1980)Decompositions of simplicial complexes related to diameters of convex polyhedra Math. Oper. Res. 5 576-814
[14]  
Van Tuyl A.(2008)Shellable graphs and sequentially Cohen–Macaulay bipartite graphs J. Combin. Theory Ser. A 115 799-293
[15]  
Francisco C.A.(1990)Cohen–Macaulay graphs Manuscripta Math. 66 277-395
[16]  
Van Tuyl A.(2007)Unmixed bipartite graphs Rev. Colombiana Mat. 41 393-3246
[17]  
Hà H.T.(2009)Vertex decomposable graphs and obstructions to shellability Proc. Amer. Math. Soc. 137 3235-2324
[18]  
Van Tuyl A.(2004)Resolutions of Facet Ideals Comm. Algebra 32 2301-undefined
[19]  
Herzog J.(undefined)undefined undefined undefined undefined-undefined
[20]  
Hibi T.(undefined)undefined undefined undefined undefined-undefined