Quantum circuits for hyperelliptic curve discrete logarithms over the Mersenne prime fields

被引:0
作者
Chao Chen
Peidong Guan
Yan Huang
Fangguo Zhang
机构
[1] Sun Yat-sen University,School of Computer Science and Engineering
[2] Guangdong Key Laboratory of Information Security,School of Mathematics and Computational Science
[3] Hunan University of Science and Technology,undefined
来源
Quantum Information Processing | / 22卷
关键词
Hyperelliptic Curves; Jacobians; Quantum Cryptanalysis; Discrete Logarithm Problem; Shor’s Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Owing to smaller key size, hyperelliptic curve cryptosystem (HCC) has attracted much attention in modern cryptography, which is generally based on the discrete logarithm problem on the hyperelliptic curves of genus 2 (HCDLP). Unfortunately, quantum computation may threaten this widely applied cryptosystem, yet the exact quantum cost of HCDLP is still unexploited because of complicated divisor addition formulae. In this work, we present the concrete quantum resource estimate for Shor’s algorithm to compute HCDLP over the Mersenne prime fields. For this aim, we first modify basic modular operations for quantum computation. Then, we realize the quantum circuit from the reversible transforms of divisor additions. As the core of our work, the transforms have been decomposed into the straight-line program of basic modular operations with minimal auxiliary registers. Finally, we expound that the HCDLP over an n-bit Mersenne prime field can be computed on a quantum computer with 3344n3-72n2-1360n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3344n^{3}-72n^{2}-1360n$$\end{document} Toffoli gates using 20n+2⌈logn⌉+10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$20n+2\lceil \log n\rceil +10$$\end{document} qubits. In particular, under the 128-bit security level, the quantum circuit for HCDLP over the Mersenne prime field F2127-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2^{127}-1}$$\end{document} requires more quantum resources than that of ECDLP over the generic prime fields.
引用
收藏
相关论文
共 33 条
  • [1] Banegas G(2021)Concrete quantum cryptanalysis of binary elliptic curves IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021 451-472
  • [2] Bernstein DJ(2010)Quantum algorithms for algebraic problems Rev. Modern Phys. 82 1-52
  • [3] van Hoof I(1986)Sequences of numbers generated by addition in formal groups and new primality and factorization tests Adv. Appl. Math. 7 385-434
  • [4] Lange T(2010)Factorization with genus 2 curves Math. Comput. 79 1191-1208
  • [5] Childs AM(1976)New directions in cryptography IEEE Trans. Inf. Theory 22 644-654
  • [6] van Dam W(2007)Fast genus 2 arithmetic based on Theta functions J. Math. Cryptol. 1 243-265
  • [7] Chudnovsky DV(2017)Factoring using Quantum Inf. Comput. 17 673-684
  • [8] Chudnovsky GV(2017) qubits with Toffoli based modular multiplication J. Cryptol. 30 572-600
  • [9] Cosset R(2021)Jacobian coordinates on genus 2 curves Appl. Math. Comput. 404 126-239
  • [10] Diffie W(2020)Fast scalar multiplication of degenerate divisors for hyperelliptic curve cryptosystems Quantum Inf. Process. 19 62-209