Uniform Existence of the Integrated Density of States on Metric Cayley Graphs

被引:0
作者
Felix Pogorzelski
Fabian Schwarzenberger
Christian Seifert
机构
[1] Friedrich-Schiller-Universität Jena,Fakultät für Mathematik und Informatik
[2] Technische Universität Chemnitz,Fakultät für Mathematik
来源
Letters in Mathematical Physics | 2013年 / 103卷
关键词
47E05; 34L40; 47B80; 81Q10; random Schrödinger operator; metric graph; quantum graph; integrated density of states;
D O I
暂无
中图分类号
学科分类号
摘要
Given an arbitrary, finitely generated, amenable group we consider ergodic Schrödinger operators on a metric Cayley graph with random potentials and random boundary conditions. We show that the normalised eigenvalue counting functions of finite volume parts converge uniformly. The integrated density of states (IDS) as the limit can be expressed by a Pastur-Shubin formula. The spectrum supports the corresponding measure and discontinuities correspond to the existence of compactly supported eigenfunctions. In this context, the present work generalises the hitherto known uniform IDS approximation results for operators on the d-dimensional metric lattice to a very large class of geometries.
引用
收藏
页码:1009 / 1028
页数:19
相关论文
共 50 条
[41]   Band edge behavior of the integrated density of states of random Jacobi matrices in dimension 1 [J].
Klopp, F .
JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (3-4) :927-947
[42]   Hölder Regularity of Integrated Density of States for the Almost Mathieu Operator in a Perturbative Regime [J].
J. Bourgain .
Letters in Mathematical Physics, 2000, 51 :83-118
[43]   Lp-Approximation of the Integrated Density of States for Schrodinger Operators with Finite Local Complexity [J].
Gruber, Michael J. ;
Lenz, Daniel H. ;
Veselic, Ivan .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 69 (02) :217-232
[44]   Asymptotic Behavior of the Integrated Density of States of Acoustic Operators with Random Long Range Perturbations [J].
Hatem Najar .
Journal of Statistical Physics, 2004, 115 :977-996
[45]   Asymptotic behavior of the integrated density of states of acoustic operators with random long range perturbations [J].
Najar, H .
JOURNAL OF STATISTICAL PHYSICS, 2004, 115 (3-4) :977-996
[46]   Band Edge Behavior of the Integrated Density of States of Random Jacobi Matrices in Dimension 1 [J].
Frédéric Klopp .
Journal of Statistical Physics, 1998, 90 :927-947
[47]   Lp-Approximation of the Integrated Density of States for Schrödinger Operators with Finite Local Complexity [J].
Michael J. Gruber ;
Daniel H. Lenz ;
Ivan Veselić .
Integral Equations and Operator Theory, 2011, 69 :217-232
[48]   Integrated density of states for Poisson-Schrodinger perturbations of subordinate Brownian motions on the Sierpinski gasket [J].
Kaleta, Kamil ;
Pietruska-Paluba, Katarzyna .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (04) :1244-1281
[49]   Some Estimates Regarding Integrated Density of States for Random Schrodinger Operator with Decaying Random Potentials [J].
Dolai, Dhriti Ranjan .
SPECTRAL THEORY AND MATHEMATICAL PHYSICS, 2016, 254 :119-132
[50]   Uniform existence of the integrated density of states for models on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}^d$$\end{document} [J].
Daniel Lenz ;
Peter Müller ;
Ivan Veselić .
Positivity, 2008, 12 (4) :571-589