Uniform Existence of the Integrated Density of States on Metric Cayley Graphs

被引:0
作者
Felix Pogorzelski
Fabian Schwarzenberger
Christian Seifert
机构
[1] Friedrich-Schiller-Universität Jena,Fakultät für Mathematik und Informatik
[2] Technische Universität Chemnitz,Fakultät für Mathematik
来源
Letters in Mathematical Physics | 2013年 / 103卷
关键词
47E05; 34L40; 47B80; 81Q10; random Schrödinger operator; metric graph; quantum graph; integrated density of states;
D O I
暂无
中图分类号
学科分类号
摘要
Given an arbitrary, finitely generated, amenable group we consider ergodic Schrödinger operators on a metric Cayley graph with random potentials and random boundary conditions. We show that the normalised eigenvalue counting functions of finite volume parts converge uniformly. The integrated density of states (IDS) as the limit can be expressed by a Pastur-Shubin formula. The spectrum supports the corresponding measure and discontinuities correspond to the existence of compactly supported eigenfunctions. In this context, the present work generalises the hitherto known uniform IDS approximation results for operators on the d-dimensional metric lattice to a very large class of geometries.
引用
收藏
页码:1009 / 1028
页数:19
相关论文
共 50 条
[1]   Uniform Existence of the Integrated Density of States on Metric Cayley Graphs [J].
Pogorzelski, Felix ;
Schwarzenberger, Fabian ;
Seifert, Christian .
LETTERS IN MATHEMATICAL PHYSICS, 2013, 103 (09) :1009-1028
[2]   Uniform existence of the integrated density of states for combinatorial and metric graphs over Zd [J].
Gruber, Michael J. ;
Lenz, Daniel H. ;
Veselic, Ivan .
ANALYSIS ON GRAPHS AND ITS APPLICATIONS, 2008, 77 :87-+
[3]   Uniform existence of the integrated density of states for random Schrodinger operators on metric graphs over Zd [J].
Gruber, Michael J. ;
Lenz, Daniel H. ;
Veselic, Ivan .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 253 (02) :515-533
[4]   Uniform existence of the integrated density of states for models on Zd [J].
Lenz, Daniel ;
Mueller, Peter ;
Veselic, Ivan .
POSITIVITY, 2008, 12 (04) :571-589
[5]   Uniform Existence of the Integrated Density of States for Randomly Weighted Hamiltonians on Long-Range Percolation Graphs [J].
Slim Ayadi ;
Fabian Schwarzenberger ;
Ivan Veselić .
Mathematical Physics, Analysis and Geometry, 2013, 16 :309-330
[6]   Uniform Existence of the Integrated Density of States for Randomly Weighted Hamiltonians on Long-Range Percolation Graphs [J].
Ayadi, Slim ;
Schwarzenberger, Fabian ;
Veselic, Ivan .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2013, 16 (04) :309-330
[7]   Continuity of the Integrated Density of States on Random Length Metric Graphs [J].
Daniel Lenz ;
Norbert Peyerimhoff ;
Olaf Post ;
Ivan Veselić .
Mathematical Physics, Analysis and Geometry, 2009, 12 :219-254
[8]   Continuity of the Integrated Density of States on Random Length Metric Graphs [J].
Lenz, Daniel ;
Peyerimhoff, Norbert ;
Post, Olaf ;
Veselic, Ivan .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2009, 12 (03) :219-254
[9]   Hamiltonians on discrete structures: jumps of the integrated density of states and uniform convergence [J].
Lenz, Daniel ;
Veselic, Ivan .
MATHEMATISCHE ZEITSCHRIFT, 2009, 263 (04) :813-835
[10]   Hamiltonians on discrete structures: jumps of the integrated density of states and uniform convergence [J].
Daniel Lenz ;
Ivan Veselić .
Mathematische Zeitschrift, 2009, 263 :813-835