Jackson-Type Inequalities for the Special Moduli of Continuity on the Entire Real Axis and the Exact Values of Mean ν - Widths for the Classes of Functions in the Space L2 (ℝ)

被引:0
作者
S. B. Vakarchuk
机构
[1] Nobel Dnepropetrovsk University,
来源
Ukrainian Mathematical Journal | 2014年 / 66卷
关键词
Entire Function; Approximation Theory; Exponential Type; Function Sinc; Require Equality;
D O I
暂无
中图分类号
学科分类号
摘要
The exact values of constants are obtained in the space L2(ℝ) for the Jackson-type inequalities for special moduli of continuity of the k th order defined by the Steklov operator Sh(f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f $$\end{document}) instead of the translation operator Th(f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f $$\end{document}) in the case of approximation by entire functions of exponential type σ ∈ (0,∞) . The exact values of the mean ν -widths (linear, Bernstein, and Kolmogorov) are also obtained for the classes of functions defined by the indicated characteristic of smoothness.
引用
收藏
页码:827 / 856
页数:29
相关论文
共 19 条
  • [1] Ibragimov II(1970)On the estimate for the best approximation of a summable function on the real axis by means of entire functions of finite degree Dokl. Akad. Nauk SSSR 194 1013-1016
  • [2] Nasibov FG(1986)On the approximation by entire functions in Dokl. Akad. Nauk Azerb. SSR 42 3-6
  • [3] Nasibov FG(2004)Exact constant in an inequality of Jackson type for East J. Approxim. 10 27-39
  • [4] Vakarchuk SB(2009)-approximation on the line and exact values of mean widths of functional classes Visn. Dnipropetr. Univ., Ser. Mat. 17 36-41
  • [5] Vakarchuk SB(2012)“On the best mean-square approximation by finite functions of finite degree on a straight line,” Ukr. Mat. Visn. 9 401-429
  • [6] Vakarchuk MB(2012)On some extremal problems of the approximation theory of functions on the real axis. I Ukr. Mat. Visn. 9 578-602
  • [7] Vakarchuk SB(2009)On some extremal problems of the approximation theory of functions on the real axis. II Mat. Zametki 86 328-336
  • [8] Vakarchuk SB(2012)Exact inequality of the Jackson–Stechkin type in Mat. Zametki 92 497-514
  • [9] Vakarchuk SB(2004) and the widths of functional classes Mat. Zametki 76 803-811
  • [10] Zabutnaya VI(2007)Inequalities of the Jackson–Stechkin type for special moduli of continuity and the widths of functional classes in the space Proc. of the Razmadze Mathematical Institute 143 103-113