Self-orthogonal codes with dual distance three and quantum codes with distance three over F5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb F _5$$\end{document}

被引:0
作者
Fangchi Liang
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
[2] Air Force Engineering University,College of Science
来源
Quantum Information Processing | 2013年 / 12卷
关键词
Self-orthogonal code; Quantum code; CSS construction; Steane construction;
D O I
暂无
中图分类号
学科分类号
摘要
Self-orthogonal codes with dual distance three and quantum codes with distance three constructed from self-orthogonal codes over F5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb F _5$$\end{document} are discussed in this paper. Firstly, for given code length n≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 5$$\end{document}, a [n,k]5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[n,k]_{5}$$\end{document} self-orthogonal code with minimal dimension k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} and dual distance three is constructed. Secondly, for each n≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 5$$\end{document}, two nested self-orthogonal codes with dual distance two and three are constructed, and consequently quantum code of length n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} and distance three is constructed via Steane construction. All of these quantum codes constructed via Steane construction are optimal or near optimal according to the quantum Hamming bound.
引用
收藏
页码:3617 / 3623
页数:6
相关论文
共 39 条
[1]  
Bennett CH(1996)Mixed state entanglement and quantum error correction Phys. Rev. A 54 3824-911
[2]  
DiVincenzo DP(1997)Theory of quantum errorcorrecting codes Phys. Rev. A 55 900-2496
[3]  
Smolin JA(1995)Scheme for reducing decoherence in quantum computer memory Phys. Rev. A 52 2493-797
[4]  
Wootters WK(1996)Error correcting codes in quantum theory Phys. Rev. Lett 77 793-409
[5]  
Knill E(1997)Quantum error correction and orthogonal geometry Phys. Rev. Lett. 76 405-2495
[6]  
laflamme R(1999)Enlargement of calderbank-shor-steane quantum codes IEEE Trans. Inf. Theory 45 2492-1387
[7]  
Shor PW(1998)Quantum error-correction via codes over GF(4) IEEE. Trans. Inf. Theory 44 1369-1832
[8]  
Steane AM(1999)Nonbinary quantum codes IEEE. Trans. Inf. Theory 45 1827-3072
[9]  
Calderbank AR(2001)Non-binary quantum stabilizer codes IEEE. Trans. Inf. Theory 47 3065-775
[10]  
Rains EM(2004)On optimal quantum codes Int. J. Quantum Inf. 2 757-4914