Fractional boundary value problems with singularities in space variables

被引:0
作者
Donal O’Regan
Svatoslav Staněk
机构
[1] National University of Ireland,Department of Mathematics
[2] Palacký University,Department of Mathematical Analysis, Faculty of Science
来源
Nonlinear Dynamics | 2013年 / 71卷
关键词
Fractional differential equation; Singular problem; Caputo fractional derivative; Nonlinear alternative; Vitali convergence theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with the existence of solutions for the singular fractional boundary value problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{c}\kern-1pt D^{\alpha}u = f(t,u)$\end{document}, u(0)+u(1)=0, u′(0)=0, where α∈(1,2), f∈C([0,1]×(ℝ∖{0})) and limx→0f(t,x)=∞ for all t∈[0,1]. Here, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{c}\kern-1pt D$\end{document} is the Caputo fractional derivative. Increasing solutions of the problem vanish at points of (0,1), that is, they “pass through” the singularity of f inside of (0,1). The results are based on combining regularization and sequential techniques with a nonlinear alternative. In limit processes, the Vitali convergence theorem is used.
引用
收藏
页码:641 / 652
页数:11
相关论文
共 66 条
[1]  
Abbas S.(2011)Dynamical analysis of fractional-order modified logistic model Comput. Math. Appl. 62 1098-1104
[2]  
Banerjee M.(2008)Boundary value problems for multi-term fractional differential equations J. Math. Anal. Appl. 345 754-765
[3]  
Momani S.(2010)Applications of fractional calculus Appl. Math. Sci. 4 1021-1032
[4]  
Daftardar-Gejji V.(2001)Differential equations of fractional order: methods, results and problems I Appl. Anal. 78 153-192
[5]  
Bhalekar S.(2002)Differential equations of fractional order: methods, results and problems II Appl. Anal. 78 435-493
[6]  
Dalir M.(2011)Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions Comput. Math. Appl. 62 1200-1214
[7]  
Bashour M.(2010)On positive solutions of a nonlocal fractional boundary value problem Nonlinear Anal. 72 916-924
[8]  
Kilbas A.A.(2011)Existence and uniqueness of positive solution for a boundary value problem of fractional order Abstr. Appl. Anal. 71 2391-2396
[9]  
Trujillo J.J.(2009)Boundary value problems for differential equations with fractional order and nonlocal conditions Nonlinear Anal. 47 81-87
[10]  
Kilbas A.A.(2010)Nontrivial solutions for boundary-value problems of nonlinear fractional differential equations Bull. Korean Math. Soc. 72 710-719