An Inequality for Projections and Convex Functions

被引:3
作者
Abed S.A. [1 ]
机构
[1] Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, Tatarstan
关键词
commutativity; convex function; Hilbert space; measure space; operator inequality; projection; von Neumann algebra;
D O I
10.1134/S1995080218090214
中图分类号
学科分类号
摘要
We propose the conditions for a continuous function to be projection-convex, i.e. f(λp+ (1 − λ)q) ≤ λf(p) + (1 − λ)f(q) for any projections p and q and any real λ ∈ (0, 1). Also we obtain the characterization of projections commutativity and the characterization of trace in terms of equalities for non-flat functions. © 2018, Pleiades Publishing, Ltd.
引用
收藏
页码:1287 / 1292
页数:5
相关论文
共 11 条
[1]  
Bikchentaev A.M., Commutation of Projections and Trace Characterization on von Neumann Algebras. II, Math. Notes, 89, 4, pp. 461-471, (2011)
[2]  
Bikchentaev A.M., Commutation of Projections and Characterization of Traces on Von Neumann Algebras. III, Int. J. Theor. Phys., 54, 12, pp. 4482-4493, (2015)
[3]  
Bikchentaev A.M., Tikhonov O.E., Characterization of the trace by young’s inequality, J. Inequal. Pure Appl. Math., 6, 2, (2005)
[4]  
Bikchentaev A.M., Tikhonov O.E., Characterization of the trace by young’s inequality, Linear Algebra Appl., 422, pp. 274-278, (2007)
[5]  
Bikchentaev A.M., On a property of Lp spaces on semifinite von Neumann algebras, Math. Notes, 64, 2, pp. 159-163, (1998)
[6]  
Bikchentaev A.M., The Peierls–Bogoliubov inequality in von Neumann algebras and characterization of tracial functionals, Lobachevskii J. Math., 32, 3, pp. 175-179, (2011)
[7]  
Pedersen G.K., Stormer E., Canad. J. Math., 34, pp. 370-373, (1982)
[8]  
Petz D., Zemenek J., Characterizations of the trace j j, Linear Algebra Appl., 111, pp. 43-52, (1988)
[9]  
Sakai S., C*-algebras and W*-algebras, (1971)
[10]  
Takesaki M., Theory of Operator Algebras, 1, (1979)