Monotonicity and convexity (concavity) properties for zero-balanced hypergeometric function

被引:0
作者
Tie-Hong Zhao
Miao-Kun Wang
机构
[1] Hangzhou Normal University,School of mathematics
[2] Huzhou University,Department of mathematics
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2024年 / 118卷
关键词
Zero-balanced; Gaussian hypergeometric function; Convexity; Concavity; Inequality; Primary 33E05; Secondary 39B62;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, for a suitable region of (a, b), we establish a necessary and sufficient condition of p>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>0$$\end{document} such that x↦log(p/1-x)F(a,b;a+b;x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} x\mapsto \frac{\log (p/\sqrt{1-x})}{F(a,b;a+b;x)} \end{aligned}$$\end{document}is strictly monotonic, convex, or concave on (0, 1), where F(a,b;a+b;x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(a,b;a+b;x)$$\end{document} represents the zero-balanced hypergeometric function. This extends the recently obtained corresponding results for the cases that a=b=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=b=1/2$$\end{document}. As applications, several functional inequalities involving zero-balanced hypergeometric function will be obtained.
引用
收藏
相关论文
共 92 条
[1]  
Alzer H(2020)A concavity property of the complete elliptic integral of the first kind Integral Transf. Spec. Funct. 31 758-768
[2]  
Richards KC(1990)Functional inequalities for complete elliptic integrals and their ratios SIAM J. Math. Anal. 21 536-549
[3]  
Anderson GD(1995)Inequalities for zero-balanced hypergeometric functions Trans. Am. Math. Soc. 347 1713-1723
[4]  
Vamanamurthy MK(1955)On the monotonicity of certain functionals in the theory of analytic functions Ann. Univ. Mariae Curie-Sklodowska 9 135-147
[5]  
Vuorinen M(2022)On the monotonicity and convexity for generalized elliptic integral of the first kind Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A-Mat. 116 21-109
[6]  
Anderson GD(2022)On the convexity and concavity of generalized complete elliptic integral of the first kind Results Math. 77 20-252
[7]  
Barnard RW(2009)Generalized ellipitc integrals Comput. Methods Func. Theory 9 75-7300
[8]  
Richards KC(2021)A concavity property of generalized complete elliptic integrals Integral Transf. Spec. Funct. 32 240-677
[9]  
Biernacki M(2022)Several absolutely monotonic functions related to the complete elliptic integral of the first kind Results Math. 77 19-1450
[10]  
Krzyz J(2023)Convexity and monotonicity involving the complete elliptic integral of the first kind Results Math. 78 18-271