Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-Multipliers Sensitive to the Group Structure on Nilpotent Lie Groups

被引:0
作者
Paweł Głowacki
机构
[1] University of Wrocław,Institute of Mathematics
关键词
Homogeneous groups; -multipliers; Fourier transform; Symbolic calculus; Hörmander metrics; Singular integrals; Flag kernels; Littlewood–Paley theory; 42B15; 42B20; 42B25;
D O I
10.1007/s00041-018-9640-4
中图分类号
学科分类号
摘要
We propose new sufficient conditions for Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-multipliers on homogeneous nilpotent groups. The multipliers generalise the flag multipliers of Nagel–Ricci–Stein–Wainger, but the approach and the techniques applied are entirely different. Our multipliers are better adapted to the specific commutation rules on the Lie algebra of the given group. The proofs are based on a new symbolic calculus fashioned after Hörmander. We also take advantage of the Cotlar–Stein lemma, and the Littlewood–Paley theory in the spirit of Duoandikoetxea–Rubio de Francia.
引用
收藏
页码:1632 / 1672
页数:40
相关论文
共 17 条
[1]  
Christ M(1992)The strong maximal function on a nilpotent group Trans. Am. Math. Soc. 331 1-13
[2]  
Duoandikoetxea J(1986)Maximal and singular integral operators via Fourier transform estimates Inv. Math. 84 541-561
[3]  
de Francia R(1992)Schwartz spaces associted with some non-differential convolution operators on homogeneous groups Colloq. Math. 63 153-157
[4]  
Dziubański J(1998)A note on Schrödinger operators with polynomial potentials Colloq. Math. 78 149-161
[5]  
Dziubański J(2007)The Melin calculus for general homogeneous groups Ark. Mat. 45 31-48
[6]  
Głowacki P(2013)-boundedness of flag kernels on homogeneous groups via symbolic calculus J. Lie Theory 23 953-977
[7]  
Głowacki P(1979)The Weyl calculus of pseudodifferential operators Commun. Pure Appl. Math. 32 359-443
[8]  
Hörmander L(1991)Formule de Weyl pour les groupes de Lie nilpotents J. Reine Angew. Math. 418 77-129
[9]  
Manchon D(1983)Parametrix constructions for right-invariant differential operators on nilpotent Lie groups Ann. Glob. Anal. Geom. 1 79-130
[10]  
Melin A(2001)Singular integrals with flag kernels and analysis on quadratic CR manifolds J. Funct. Anal. 181 29-118