Approximating Minimum-Power Degree and Connectivity Problems

被引:0
作者
Guy Kortsarz
Vahab S. Mirrokni
Zeev Nutov
Elena Tsanko
机构
[1] Rutgers University,
[2] Google Research,undefined
[3] The Open University of Israel,undefined
[4] IBM,undefined
来源
Algorithmica | 2011年 / 60卷
关键词
Power; Graphs; Wireless; Degree; -connectivity; Approximation;
D O I
暂无
中图分类号
学科分类号
摘要
Power optimization is a central issue in wireless network design. Given a graph with costs on the edges, the power of a node is the maximum cost of an edge incident to it, and the power of a graph is the sum of the powers of its nodes. Motivated by applications in wireless networks, we consider several fundamental undirected network design problems under the power minimization criteria. Given a graph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}=(V,\mathcal{E})$\end{document} with edge costs {c(e):e∈ℰ} and degree requirements {r(v):v∈V}, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\textsf{Minimum-Power Edge-Multi-Cover}$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\textsf{MPEMC}$\end{document} ) problem is to find a minimum-power subgraph G of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{G}$\end{document} so that the degree of every node v in G is at least r(v). We give an O(log n)-approximation algorithms for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\textsf{MPEMC}$\end{document} , improving the previous ratio O(log 4n). This is used to derive an O(log n+α)-approximation algorithm for the undirected \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\textsf{Minimum-Power $k$-Connected Subgraph}$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\textsf{MP$k$CS}$\end{document} ) problem, where α is the best known ratio for the min-cost variant of the problem. Currently, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha=O(\log k\cdot \log\frac{n}{n-k})$\end{document} which is O(log k) unless k=n−o(n), and is O(log 2k)=O(log 2n) for k=n−o(n). Our result shows that the min-power and the min-cost versions of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\textsf{$k$-Connected Subgraph}$\end{document} problem are equivalent with respect to approximation, unless the min-cost variant admits an o(log n)-approximation, which seems to be out of reach at the moment.
引用
收藏
页码:735 / 742
页数:7
相关论文
共 18 条
[1]  
Althaus E.(2006)Power efficient range assignment for symmetric connectivity in static ad-hoc wireless networks Wirel. Netw. 12 287-299
[2]  
Calinescu G.(2006)Range assignment for biconnectivity and Mob. Netw. Appl. 11 121-128
[3]  
Mandoiu I.(2007)-edge connectivity in wireless ad hoc networks Math. Program. 110 195-208
[4]  
Prasad S.(2005)Power optimization for connectivity problems J. Comb. Optim. 9 213-222
[5]  
Tchervenski N.(1974)Power assignment for J. Comput. Syst. Sci. 9 256-278
[6]  
Zelikovsky A.(undefined)-connectivity in wireless ad hoc networks undefined undefined undefined-undefined
[7]  
Calinescu G.(undefined)Approximation algorithms for combinatorial problems undefined undefined undefined-undefined
[8]  
Wan P.J.(undefined)undefined undefined undefined undefined-undefined
[9]  
Hajiaghayi M.T.(undefined)undefined undefined undefined undefined-undefined
[10]  
Kortsarz G.(undefined)undefined undefined undefined undefined-undefined