Quotient rings of graded associative rings. I

被引:0
作者
I. N. Balaba
A. L. Kanunnikov
A. V. Mikhalev
机构
[1] L. Tolstoy Tula State Pedagogical University, Tula
[2] Moscow State University, Moscow
基金
俄罗斯基础研究基金会;
关键词
Prime Ring; Regular Element; Quotient Ring; Semiprime Ring; Extended Centroid;
D O I
10.1007/s10958-012-1005-y
中图分类号
学科分类号
摘要
This paper contains a review of results on graded quotient rings and new results proved by the authors. © 2012 Springer Science+Business Media New York.
引用
收藏
页码:531 / 577
页数:46
相关论文
共 59 条
  • [21] Faith C., Algebra: Rings, Modules and Categories, 1, (1973)
  • [22] Ferrero M., Jespers E., Puezylowski E.R., Prime ideals of graded rings and related matter, Commun. Algebra, 18, 11, pp. 3819-3834, (1990)
  • [23] Fosner M., On the extended centroid of prime associative superalgebras with applications to superderivations, Commun. Algebra, 32, 2, pp. 689-705, (2004)
  • [24] Gabriel P., La localisation dans les anneaux non commutatifs, Séminaire Dubreil. Algèbre et théorie des nombres, 13, 1, pp. 1-35, (1959)
  • [25] Gabriel P., Des categories abeliennes, Bull. Soc. Math. Fr., 90, pp. 323-448, (1962)
  • [26] Goldie A.W., The structure of prime rings under ascending chain conditions, Proc. London Math. Soc., 8, pp. 589-608, (1958)
  • [27] Goldie A.W., Semi-prime rings with maximal conditions, Proc. London Math. Soc., 10, pp. 201-220, (1960)
  • [28] Goldie A.W., Non-commutative principal ideal rings, Arch. Math., 13, pp. 213-221, (1962)
  • [29] Goodearl K., Stafford T., The graded version of Goldie’s theorem, Contemp. Math., 259, pp. 237-240, (2000)
  • [30] Herstein I.N., Noncommutative Rings, 15, (1968)