Lifting of convex functions on Carnot groups and lack of convexity for a gauge function

被引:0
作者
Andrea Bonfiglioli
机构
[1] Università degli Studi di Bologna,Dipartimento di Matematica
来源
Archiv der Mathematik | 2009年 / 93卷
关键词
Primary 26B25; 35J70; 43A80; Secondary 22E25; 35A30; Horizontally convex functions; Carnot groups; Gauge functions;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{G}}$$\end{document} be a Carnot group of step r and m generators and homogeneous dimension Q. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_{m,r}}$$\end{document} denote the free Lie group of step r and m generators. Let also \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pi:\mathbb{F}_{m,r}\to\mathbb{G}}$$\end{document} be a lifting map. We show that any horizontally convex function u on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{G}}$$\end{document} lifts to a horizontally convex function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u\circ \pi}$$\end{document} on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_{m,r}}$$\end{document} (with respect to a suitable horizontal frame on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_{m,r}}$$\end{document}). One of the main aims of the paper is to exhibit an example of a sub-Laplacian \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}=\sum_{j=1}^m X_j^2}$$\end{document} on a Carnot group of step two such that the relevant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document}-gauge function d (i.e., d2-Q is the fundamental solution for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document}) is not h-convex with respect to the horizontal frame {X1, . . . , Xm}. This gives a negative answer to a question posed in Danielli et al. (Commun. Anal. Geom. 11 (2003), 263–341).
引用
收藏
页码:277 / 286
页数:9
相关论文
共 40 条
  • [11] Uguzzoni F.(2004)New properties of convex functions in the Heisenberg group Comm. Partial Diff. Equations 29 1305-1334
  • [12] Capogna L.(2004)Maximum and comparison principles for convex functions on the Heisenberg group Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 349-366
  • [13] Maldonado D.(2007)On the second order derivatives of convex functions on the Heisenberg group Rev. Mat. Iberoam. 23 191-200
  • [14] Danielli D.(1980)Convex functions on Carnot groups Trans. Amer. Math. Soc. 258 147-153
  • [15] Garofalo N.(2004)Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms Calc. Var. Partial Differential Equations 19 1-22
  • [16] Nhieu D.-M.(2006)Convex functions on the Heisenberg group Math. Ann. 334 199-233
  • [17] Danielli D.(2005)Lipschitz continuity, Aleksandrov theorem and characterizations for J. Convex Anal. 12 187-196
  • [18] Folland G.B.(2006)-convex functions J. Geom. Anal. 16 679-702
  • [19] Garofalo N.(1976)Geodetically convex sets in the Heisenberg group Acta Math. 137 247-320
  • [20] Tournier F.(2006)First-order regularity of convex functions on Carnot groups Commun. Contemp. Math. 8 1-8