Lifting of convex functions on Carnot groups and lack of convexity for a gauge function

被引:0
作者
Andrea Bonfiglioli
机构
[1] Università degli Studi di Bologna,Dipartimento di Matematica
来源
Archiv der Mathematik | 2009年 / 93卷
关键词
Primary 26B25; 35J70; 43A80; Secondary 22E25; 35A30; Horizontally convex functions; Carnot groups; Gauge functions;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{G}}$$\end{document} be a Carnot group of step r and m generators and homogeneous dimension Q. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_{m,r}}$$\end{document} denote the free Lie group of step r and m generators. Let also \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pi:\mathbb{F}_{m,r}\to\mathbb{G}}$$\end{document} be a lifting map. We show that any horizontally convex function u on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{G}}$$\end{document} lifts to a horizontally convex function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u\circ \pi}$$\end{document} on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_{m,r}}$$\end{document} (with respect to a suitable horizontal frame on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_{m,r}}$$\end{document}). One of the main aims of the paper is to exhibit an example of a sub-Laplacian \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}=\sum_{j=1}^m X_j^2}$$\end{document} on a Carnot group of step two such that the relevant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document}-gauge function d (i.e., d2-Q is the fundamental solution for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document}) is not h-convex with respect to the horizontal frame {X1, . . . , Xm}. This gives a negative answer to a question posed in Danielli et al. (Commun. Anal. Geom. 11 (2003), 263–341).
引用
收藏
页码:277 / 286
页数:9
相关论文
共 40 条
  • [1] Balogh Z.M.(2003)Regularity of convex functions on Heisenberg groups Ann. Sc. Norm. Super. Pisa, Cl. Sci. 2 847-868
  • [2] Rickly M.(2002)Polar coordinates in Carnot group Math. Z. 241 697-730
  • [3] Balogh Z.M.(1996)The Green function of model step two hypoelliptic operators and the analysis of certain tangential Cauchy Riemann complexes Adv. Math. 121 288-345
  • [4] Tyson J.T.(2005)A note on lifting of Carnot groups Rev. Mat. Iberoam. 21 1013-1035
  • [5] Beals R.(2004)Families of diffeomorphic sub-Laplacian and free Carnot groups Forum Math. 16 403-415
  • [6] Gaveau B.(2006)A note on the engulfing property and the Γ Proc. Am. Math. Soc. 134 3191-3199
  • [7] Greiner P.(2003)-regularity of convex functions in Carnot groups Commun. Anal. Geom. 11 263-341
  • [8] Bonfiglioli A.(2004)Notions of convexity in Carnot groups Commun. Anal. Geom. 12 853-886
  • [9] Uguzzoni F.(1975)The theorem of Busemann-Feller-Alexandrov in Carnot groups Ark. Mat. 13 161-207
  • [10] Bonfiglioli A.(2006)Subelliptic estimates and function spaces on nilpotent Lie groups Trans. Amer. Math. Soc. 358 2011-2055