Bayesian adaptive Lasso

被引:0
|
作者
Chenlei Leng
Minh-Ngoc Tran
David Nott
机构
[1] National University of Singapore,Department of Statistics and Applied Probability
[2] University of Warwick,Department of Statistics
[3] Australian School of Business,undefined
[4] University of New South Wales,undefined
来源
Annals of the Institute of Statistical Mathematics | 2014年 / 66卷
关键词
Bayesian Lasso; Gibbs sampler; Lasso; Scale mixture of normals; Variable selection;
D O I
暂无
中图分类号
学科分类号
摘要
We propose the Bayesian adaptive Lasso (BaLasso) for variable selection and coefficient estimation in linear regression. The BaLasso is adaptive to the signal level by adopting different shrinkage for different coefficients. Furthermore, we provide a model selection machinery for the BaLasso by assessing the posterior conditional mode estimates, motivated by the hierarchical Bayesian interpretation of the Lasso. Our formulation also permits prediction using a model averaging strategy. We discuss other variants of this new approach and provide a unified framework for variable selection using flexible penalties. Empirical evidence of the attractiveness of the method is demonstrated via extensive simulation studies and data analysis.
引用
收藏
页码:221 / 244
页数:23
相关论文
共 50 条
  • [31] Comparing Bayesian Variable Selection to Lasso Approaches for Applications in Psychology
    Bainter, Sierra A.
    McCauley, Thomas G.
    Fahmy, Mahmoud M.
    Goodman, Zachary T.
    Kupis, Lauren B.
    Rao, J. Sunil
    PSYCHOMETRIKA, 2023, 88 (03) : 1032 - 1055
  • [32] An Extreme Value Bayesian Lasso for the Conditional Left and Right Tails
    de Carvalho, M.
    Pereira, S.
    Pereira, P.
    Bermudez, P. de Zea
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (02) : 222 - 239
  • [33] An Extreme Value Bayesian Lasso for the Conditional Left and Right Tails
    M. de Carvalho
    S. Pereira
    P. Pereira
    P. de Zea Bermudez
    Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 222 - 239
  • [34] Comparing Bayesian Variable Selection to Lasso Approaches for Applications in Psychology
    Sierra A. Bainter
    Thomas G. McCauley
    Mahmoud M. Fahmy
    Zachary T. Goodman
    Lauren B. Kupis
    J. Sunil Rao
    Psychometrika, 2023, 88 : 1032 - 1055
  • [35] Bayesian generalized fused lasso modeling via NEG distribution
    Shimamura, Kaito
    Ueki, Masao
    Kawano, Shuichi
    Konishi, Sadanori
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (16) : 4132 - 4153
  • [36] Bayesian reciprocal LASSO quantile regression
    Alhamzawi, Rahim
    Mallick, Himel
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (11) : 6479 - 6494
  • [37] Bayesian Lasso with Effect Heredity Principle
    Noguchi, Hidehisa
    Ojima, Yoshikazu
    Yasui, Seiichi
    FRONTIERS IN STATISTICAL QUALITY CONTROL 11, 2015, : 355 - 365
  • [38] PERTURBATION BOOTSTRAP IN ADAPTIVE LASSO
    Das, Debraj
    Gregory, Karl
    Lahiri, S. N.
    ANNALS OF STATISTICS, 2019, 47 (04) : 2080 - 2116
  • [39] NETWORK EXPLORATION VIA THE ADAPTIVE LASSO AND SCAD PENALTIES
    Fan, Jianqing
    Feng, Yang
    Wu, Yichao
    ANNALS OF APPLIED STATISTICS, 2009, 3 (02) : 521 - 541
  • [40] Adaptive lasso for Cox's proportional hazards model
    Zhang, Hao Helen
    Lu, Wenbin
    BIOMETRIKA, 2007, 94 (03) : 691 - 703