Berezin-Toeplitz quantization and naturally defined star products for Kähler manifolds

被引:0
作者
Martin Schlichenmaier
机构
[1] University of Luxembourg,Mathematics Research Unit, FSTC
来源
Analysis and Mathematical Physics | 2018年 / 8卷
关键词
Berezin-Toeplitz quantization; Geometric quantization; Deformation quantization; Kähler manifolds; Star products; Separation of variables type of star product; Primary 53D55; Secondary 32J27; 47B35; 53D50; 81S10;
D O I
暂无
中图分类号
学科分类号
摘要
For compact quantizable Kähler manifolds the Berezin-Toeplitz quantization schemes, both operator and deformation quantization (star product) are reviewed. The treatment includes Berezin’s covariant symbols and the Berezin transform. The general compact quantizable case was done by Bordemann–Meinrenken–Schlichenmaier, Schlichenmaier, and Karabegov–Schlichenmaier. For star products on Kähler manifolds, separation of variables, or equivalently star product of (anti-) Wick type, is a crucial property. As canonically defined star products the Berezin-Toeplitz, Berezin, and the geometric quantization are treated. It turns out that all three are equivalent, but different.
引用
收藏
页码:691 / 710
页数:19
相关论文
共 71 条
[1]  
Bayen F(1977)Deformation theory and quantization Part I Lett. Math. Phys. 1 521-530
[2]  
Flato M(1978)Deformation theory and quantization. Part II Ann. Phys. 111 61-110
[3]  
Fronsdal C(1978)Deformation theory and quantization Part III Ann. Phys. 111 111-151
[4]  
Lichnerowicz A(1974)Quantization Math. USSR-Izv. 8 1109-1165
[5]  
Sternheimer D(1975)Quantization in complex symmetric spaces Math. USSR-Izv. 9 341-379
[6]  
Bayen F(1975)General concept of quantization Commun. Math. Phys 40 153-174
[7]  
Flato M(1994)Toeplitz quantization of Kähler manifolds and Commun. Math. Phys. 165 281-296
[8]  
Fronsdal C(1997) limits Lett. Math. Phys. 41 243-253
[9]  
Lichnerowicz A(1990)A Fedosov star product of the Wick type for Kähler manifolds JGP 7 45-62
[10]  
Sternheimer D(1993)Quantization of Kähler manifolds I: Geometric interpretation of Berezin’s quantization Trans. Am. Math. Soc. 337 73-98