Boundaries in free higher derivative conformal field theories

被引:0
作者
Adam Chalabi
Christopher P. Herzog
Krishnendu Ray
Brandon Robinson
Jacopo Sisti
Andreas Stergiou
机构
[1] University of Copenhagen,Niels Bohr Institute
[2] University of Southampton,STAG Research Centre, Physics and Astronomy
[3] King’s College London,Department of Mathematics
[4] University of Oxford,Rudolf Peierls Centre for Theoretical Physics
[5] K.U. Leuven,Instituut voor Theoretische Fysica
[6] INFN,Department of Physics and Astronomy
[7] sezione di Milano-Bicocca,undefined
[8] Uppsala University,undefined
来源
Journal of High Energy Physics | / 2023卷
关键词
Boundary Quantum Field Theory; Renormalization Group; Scale and Conformal Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
We consider free higher derivative theories of scalars and Dirac fermions in the presence of a boundary in general dimension. We establish a method for finding consistent conformal boundary conditions in these theories by removing certain boundary primaries from the spectrum. A rich set of renormalization group flows between various conformal boundary conditions is revealed, triggered by deformations quadratic in the boundary primaries. We compute the free energy of these theories on a hemisphere, and show that the boundary a-theorem is generally violated along boundary flows as a consequence of bulk non-unitarity. We further characterize the boundary theory by computing the two-point function of the displacement operator.
引用
收藏
相关论文
共 77 条
[1]  
Greaves GN(2012), History of Science 67 37-undefined
[2]  
Fradkin ES(1982) □ Phys. Lett. B 110 117-undefined
[3]  
Tseytlin AA(1982)undefined Nucl. Phys. B 203 157-undefined
[4]  
Fradkin ES(2001)undefined Phys. Lett. B 514 377-undefined
[5]  
Tseytlin AA(2022)undefined JHEP 06 104-undefined
[6]  
de Berredo-Peixoto G(2016)undefined JHEP 06 079-undefined
[7]  
Shapiro IL(1996)undefined Phys. Lett. B 382 349-undefined
[8]  
Stergiou A(2016)undefined Phys. Lett. B 757 257-undefined
[9]  
Vacca GP(2005)undefined Phys. Lett. B 622 339-undefined
[10]  
Zanusso O(2001)undefined Pacific J. Math. 201 19-undefined