Existence of nontrivial weak solutions for p-biharmonic Kirchhoff-type equations

被引:0
作者
Jung-Hyun Bae
Jae-Myoung Kim
Jongrak Lee
Kisoeb Park
机构
[1] Sungkyunkwan University,Department of Mathematics
[2] Yonsei University,Department of Mathematics
[3] Ewha Womans University,Institute of Mathematical Sciences
[4] Incheon National University,Department of Mathematics
来源
Boundary Value Problems | / 2019卷
关键词
-biharmonic; Kirchhoff type; Variational method; 35J60; 35J92; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with the following p-biharmonic equations: Δp2u+M(∫RNΦ0(x,∇u)dx)div(φ(x,∇u))+V(x)|u|p−2u=λf(x,u)in RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta _{p}^{2} u+M \biggl( \int _{\mathbb{R}^{N}}\varPhi _{0}(x,\nabla u) \,dx \biggr) \operatorname{div}\bigl(\varphi (x,\nabla u)\bigr)+V(x) \vert u \vert ^{p-2}u=\lambda f(x,u) \quad \text{in } \mathbb{R}^{N}, $$\end{document} where 2<2p<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2< 2p<N$\end{document}, Δp2u=Δ(|Δu|p−2Δu)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta _{p}^{2}u=\Delta (|\Delta u|^{p-2} \Delta u)$\end{document}, the function φ(x,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varphi (x,v)$\end{document} is of type |v|p−2v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lvert v \rvert ^{p-2}v$\end{document}, φ(x,v)=ddvΦ0(x,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varphi (x,v)=\frac{d}{dv}\varPhi _{0}(x,v)$\end{document}, the potential function V:RN→(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V:\mathbb{R}^{N}\to (0,\infty )$\end{document} is continuous, and f:RN×R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f:\mathbb{R} ^{N}\times \mathbb{R} \to \mathbb{R}$\end{document} satisfies the Carathéodory condition. We study the existence of weak solutions for the problem above via mountain pass and fountain theorems.
引用
收藏
相关论文
共 64 条
[41]  
Pan W.-W.(undefined)Multiplicity results for a fourth-order semilinear elliptic problem undefined undefined undefined-undefined
[42]  
Lin X.(undefined)A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids undefined undefined undefined-undefined
[43]  
Tang X.H.(undefined)Superlinear problems without Ambrosetti and Rabinowitz growth condition undefined undefined undefined-undefined
[44]  
Liu L.(undefined)Existence and multiplicity of nontrivial solutions for some biharmonic equations with undefined undefined undefined-undefined
[45]  
Chen C.(undefined)-Laplacian undefined undefined undefined-undefined
[46]  
Liu S.B.(undefined)On the spectrum of the weighted undefined undefined undefined-undefined
[47]  
Liu S.B.(undefined)-biharmonic operator with weight undefined undefined undefined-undefined
[48]  
Li S.J.(undefined)The effect of axial force on the vibration of hinged bars undefined undefined undefined-undefined
[49]  
Micheletti A.M.(undefined)Multiple solutions on a undefined undefined undefined-undefined
[50]  
Pistoia A.(undefined)-biharmonic equation with nonlocal term undefined undefined undefined-undefined