Nonlinear evolution equations and hyperelliptic covers of elliptic curves

被引:0
作者
Armando Treibich
机构
[1] Université Lille Nord de France F 59000,France UArtois Laboratoire de Mathématique de Lens EA2462, Féderation CNRS Nord
[2] Universidad de la República,Pas
来源
Regular and Chaotic Dynamics | 2011年 / 16卷
关键词
elliptic and hyperelliptic curves; Jacobian variety; ruled and rational surfaces; exceptional curve; elliptic soliton; 14E05; 14H30; 14H40; 14H55; 14H70; 14H81; 14C20; 35C08; 35Q51; 35Q53; 35Q55; 37K20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is a further contribution to the study of exact solutions to KP, KdV, sine-Gordon, 1D Toda and nonlinear Schrodinger equations. We will be uniquely concerned with algebro-geometric solutions, doubly periodic in one variable. According to (so-called) Its-Matveev’s formulae, the Jacobians of the corresponding spectral curves must contain an elliptic curve X, satisfying suitable geometric properties. It turns out that the latter curves are in fact contained in a particular algebraic surface S ⊥, projecting onto a rational surface \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde S$\end{document}. Moreover, all spectral curves project onto a rational curve inside \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde S$\end{document}. We are thus led to study all rational curves of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde S$\end{document}, having suitable numerical equivalence classes. At last we obtain d- 1-dimensional of spectral curves, of arbitrary high genus, giving rise to KdV solutions doubly periodic with respect to the d-th KdV flow (d ≥ 1). Analogous results are presented, without proof, for the 1D Toda, NL Schrodinger an sine-Gordon equation.
引用
收藏
页码:290 / 310
页数:20
相关论文
共 46 条
[31]  
van Moerbeke P.(undefined)A Scheme for Integrating the Nonlinear Equations of Mathematical Physics by the Method of the Inverse Scattering Problem: 1 undefined undefined undefined-undefined
[32]  
Previato E.(undefined)undefined undefined undefined undefined-undefined
[33]  
Segal G.(undefined)undefined undefined undefined undefined-undefined
[34]  
Wilson G.(undefined)undefined undefined undefined undefined-undefined
[35]  
Smirnov A.O.(undefined)undefined undefined undefined undefined-undefined
[36]  
Smirnov A.O.(undefined)undefined undefined undefined undefined-undefined
[37]  
Smirnov A.O.(undefined)undefined undefined undefined undefined-undefined
[38]  
Smirnov A.O.(undefined)undefined undefined undefined undefined-undefined
[39]  
Toda M.(undefined)undefined undefined undefined undefined-undefined
[40]  
Treibich A.(undefined)undefined undefined undefined undefined-undefined