Nonlinear evolution equations and hyperelliptic covers of elliptic curves

被引:0
作者
Armando Treibich
机构
[1] Université Lille Nord de France F 59000,France UArtois Laboratoire de Mathématique de Lens EA2462, Féderation CNRS Nord
[2] Universidad de la República,Pas
来源
Regular and Chaotic Dynamics | 2011年 / 16卷
关键词
elliptic and hyperelliptic curves; Jacobian variety; ruled and rational surfaces; exceptional curve; elliptic soliton; 14E05; 14H30; 14H40; 14H55; 14H70; 14H81; 14C20; 35C08; 35Q51; 35Q53; 35Q55; 37K20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is a further contribution to the study of exact solutions to KP, KdV, sine-Gordon, 1D Toda and nonlinear Schrodinger equations. We will be uniquely concerned with algebro-geometric solutions, doubly periodic in one variable. According to (so-called) Its-Matveev’s formulae, the Jacobians of the corresponding spectral curves must contain an elliptic curve X, satisfying suitable geometric properties. It turns out that the latter curves are in fact contained in a particular algebraic surface S ⊥, projecting onto a rational surface \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde S$\end{document}. Moreover, all spectral curves project onto a rational curve inside \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde S$\end{document}. We are thus led to study all rational curves of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde S$\end{document}, having suitable numerical equivalence classes. At last we obtain d- 1-dimensional of spectral curves, of arbitrary high genus, giving rise to KdV solutions doubly periodic with respect to the d-th KdV flow (d ≥ 1). Analogous results are presented, without proof, for the 1D Toda, NL Schrodinger an sine-Gordon equation.
引用
收藏
页码:290 / 310
页数:20
相关论文
共 46 条
[1]  
Airault H.(1977)Rational and Elliptic Solutions of the Korteweg-de Vries Equation and a Related Many Body Problem Comm. Pure Appl. Math. 30 95-148
[2]  
McKean H.P.(2002)Elliptic Families of Solutions of the Kadomtsev-Petviashvili Equation, and the Field Analog of the Elliptic Calogero-Moser System Funktsional. Anal. i Prilozhen. 36 1-17
[3]  
Moser J.(1985)Solutions of Nonlinear Equations Integrable in Jacobi Theta Functions by the Method of the Inverse Problem, and Symmetries of Algebraic Curves Izv. Akad. Nauk SSSR Ser. Mat. 49 511-529
[4]  
Akhmetshin A.A.(1986)Algebraic-Geometric Principles of Superposition of Finite-Zone Solutions of the Integrable Nonlinear Equations Uspekhi Math. Nauk 41 3-42
[5]  
Krichever I. M.(1984)Periodic Finite-Zone Solutions of the Sine-Gordon Equation Funktsional. Anal. i Prilozhen. 18 73-74
[6]  
Vol’vovskii Y. S.(1971)Solution of the One Dimensional J. Math. Phys. 12 419-436
[7]  
Babich M.V.(1976)-Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials Uspekhi Math. Nauk 31 55-136
[8]  
Bobenko A. I.(1982)Nonlinear Equations of KdV Type, Finite-Zone Linear Operators and Abelian Varieties Funktsional. Anal. i Prilozhen. 16 27-43
[9]  
Matveev V.B.(1974)Real Two-Zone Solutions of the Sine-Gordon Equation Dokl. Acad. Nauk SSSR 219 531-534
[10]  
Belokolos E. D.(1975)A Periodicity Problem for the Korteweg-de Vries and Sturm-Liouville Equations: Their Connection with Algebraic Geometry Teoret. Mat. Fiz. 23 51-68