On Minimum Sum of Radii and Diameters Clustering

被引:0
作者
Babak Behsaz
Mohammad R. Salavatipour
机构
[1] University of Alberta,Department of Computing Science
来源
Algorithmica | 2015年 / 73卷
关键词
Clustering; Minimum sum radii and diameters; Euclidean metric;
D O I
暂无
中图分类号
学科分类号
摘要
Given a metric (V,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(V,d)$$\end{document} and an integer k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}, we consider the problem of partitioning the points of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V$$\end{document} into at most k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} clusters so as to minimize the sum of radii or the sum of diameters of these clusters. The former problem is called the minimum sum of radii (MSR) problem and the latter is the minimum sum of diameters (MSD) problem. The current best polynomial time algorithms for these problems have approximation ratios 3.504 and 7.008, respectively. We call a cluster containing a single point, a singleton cluster. For the MSR problem when singleton clusters are not allowed, we give an exact algorithm for metrics induced by unweighted graphs. In addition, we show that in this case, a solution consisting of the best single cluster for each connected component of the graph is a 32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{2}$$\end{document}-approximation algorithm. For the MSD problem on the plane with Euclidean distances, we present a polynomial time approximation scheme. In addition, we settle the open problem of complexity of the MSD problem with constant k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} by giving a polynomial time exact algorithm in this case. The previously best known approximation algorithms for MSD on the plane or for MSD with constant k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} have both ratio 2.
引用
收藏
页码:143 / 165
页数:22
相关论文
共 26 条
[1]  
Capoyleas V(1991)Geometric clusterings J. Algorithms 12 341-356
[2]  
Rote G(2004)Clustering to minimize the sum of cluster diameters J. Comput. Syst. Sci. 68 417-441
[3]  
Woeginger G(2000)Approximation algorithms for clustering to minimize the sum of diameters Nordic J. Comput. 7 185-203
[4]  
Charikar Moses(1974)Metric entropy of some classes of sets with differentiable boundaries J. Approx. Theory 10 227-236
[5]  
Panigrahy Rina(2010)On metric clustering to minimize the sum of radii Algorithmica 57 484-498
[6]  
Doddi S(2012)On clustering to minimize the sum of radii SIAM J. Comput. 41 47-60
[7]  
Marathe MV(1987)Minimum sum of diameters clustering J. Classif. 4 215-226
[8]  
Ravi SS(1985)A best possible heuristic for the k-center problem Math. Oper. Res. 10 180-184
[9]  
Taylor DS(1901)Über die kleinste Kugel, die eine räumliche Figur einschliesst J. Reine Angew. Math. 123 241-257
[10]  
Widmayer P(undefined)undefined undefined undefined undefined-undefined