Best approximations of the classes B p,θ r of periodic functions of many variables in uniform metric

被引:0
作者
Romanyuk A.S. [1 ]
机构
[1] Institute of Mathematics, Ukrainian Academy of Sciences, Kiev
关键词
Periodic Function; Linear Method; Trigonometric Polynomial; Estimate Exact; Kolmogorov Width;
D O I
10.1007/s11253-006-0155-9
中图分类号
学科分类号
摘要
We obtain estimates exact in order for the best approximations of the classes B ∞,θ r of periodic functions of two variables in the metric of L ∞ by trigonometric polynomials whose spectrum belongs to a hyperbolic cross. We also investigate the best approximations of the classes B p,θ r , 1 p < ∞, of periodic functions of many variables in the metric of L ∞ by trigonometric polynomials whose spectrum belongs to a graded hyperbolic cross. © Springer Science+Business Media, Inc. 2006.
引用
收藏
页码:1582 / 1596
页数:14
相关论文
共 7 条
[1]  
Romanyuk A.S., Approximation of the classes B <sub>p,θ</sub><sup>r</sup> of periodic functions of many variables by linear methods and best approximations, Mat. Sb, 195, 2, pp. 91-116, (2004)
[2]  
Besov O.V., On one family of functional spaces. Theorems on imbedding and extension, Dokl. Akad. Nauk SSSR, 126, 6, pp. 1163-1165, (1959)
[3]  
Nikol'skii S.M., Approximation of Functions of Many Variables and Imbedding Theorems, (1969)
[4]  
Lizorkin P.I., Nikol'skii S.M., Spaces of functions of mixed smoothness from the decomposition point of view, Tr. Mat. Inst. Akad. Nauk SSSR, 187, pp. 143-161, (1989)
[5]  
Temlyakov V.N., Approximation of functions with bounded mixed derivative, Tr. Mat. Inst. Akad. Nauk SSSR, 178, pp. 1-112, (1986)
[6]  
Korneichuk N.P., Exact Constants in Approximation Theory, (1987)
[7]  
Romanyuk A.S., Kolmogorov widths of the Besov classes B<sub>p,θ</sub><sup>r</sup> in the metric of the space L<sub>∞</sub>, Ukr. Mat. Visn, 2, 2, pp. 201-218, (2005)