The Existence and Local Uniqueness of Multi-Peak Solutions to a Class of Kirchhoff Type Equations

被引:0
作者
Leilei Cui
Jiaxing Guo
Gongbao Li
机构
[1] Central China Normal University,Hubei Key Laboratory of Mathematical Sciences and School of Mathematics and Statistics
来源
Acta Mathematica Scientia | 2023年 / 43卷
关键词
Kirchhoff type equations; potential functions having non-degenerate critical points; the Lyapunov-Schmidt reduction method; multi-peak solutions; existence and local uniqueness; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - \left({{\varepsilon ^2}a + \varepsilon b\int_{{\mathbb{R}^3}} {|\nabla u{|^2}}} \right)\,\,\Delta u + V(x)u = {u^p},\,\,\,\,\,\,u > 0\,\,\,\,\,{\rm{in}}\,\,\,{\mathbb{R}^3},$$\end{document} which concentrate at non-degenerate critical points of the potential function V(x), where a, b > 0, 1 < p < 5 are constants, and ε > 0 is a parameter. Applying the Lyapunov-Schmidt reduction method and a local Pohozaev type identity, we establish the existence and local uniqueness results of multi-peak solutions, which concentrate at {ai}1≤i≤k, where {ai}1≤i≤k are non-degenerate critical points of V(x) as ε → 0.
引用
收藏
页码:1131 / 1160
页数:29
相关论文
共 50 条
  • [41] Nodal Multi-peak Standing Waves of Fourth-Order Schrodinger Equations with Mixed Dispersion
    He, Yi
    Luo, Xiao
    Radulescu, Vicentiu D.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (01)
  • [42] MULTIPLE SOLUTIONS FOR A CLASS OF KIRCHHOFF TYPE EQUATIONS WITH ZERO MASS AND HARDY-LITTLEWOOD-SOBOLEV CRITICAL NONLINEARITY
    Wei, Chongqing
    Li, Anran
    [J]. JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2024, 8 (01): : 23 - 39
  • [43] EXISTENCE OF POSITIVE SOLUTION FOR THE NONLINEAR KIRCHHOFF TYPE EQUATIONS IN THE HALF SPACE WITH A HOLE
    He, Haiyang
    Yi, Xing
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 1175 - 1190
  • [44] EXISTENCE AND CONCENTRATION FOR KIRCHHOFF TYPE EQUATIONS AROUND TOPOLOGICALLY CRITICAL POINTS OF THE POTENTIAL
    Chen, Yu
    Ding, Yanheng
    Li, Suhong
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (05) : 1641 - 1671
  • [45] SIGN-CHANGING MULTI-BUMP SOLUTIONS FOR KIRCHHOFF-TYPE EQUATIONS R3
    Deng, Yinbin
    Shuai, Wei
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (06) : 3139 - 3168
  • [46] Nodal Multi-peak Standing Waves of Fourth-Order Schrödinger Equations with Mixed Dispersion
    Yi He
    Xiao Luo
    Vicenţiu D. Rădulescu
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [47] Existence of multiple solutions for fractional p-Kirchhoff equations with concave-convex nonlinearities
    Yang, Libo
    An, Tianqing
    [J]. BOUNDARY VALUE PROBLEMS, 2017,
  • [48] Existence of multiple solutions for fractional p-Kirchhoff equations with concave-convex nonlinearities
    Libo Yang
    Tianqing An
    [J]. Boundary Value Problems, 2017
  • [49] Existence of Sign-Changing Solutions for a Nonlocal Problem of p-Kirchhoff Type
    S. H. Rasouli
    H. Fani
    S. Khademloo
    [J]. Mediterranean Journal of Mathematics, 2017, 14
  • [50] Sign-changing solutions for Kirchhoff-type equations with indefinite nonlinearities
    Zhiying Cui
    Wei Shuai
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2023, 74