The Essential Spectrum of a Three Particle Schrödinger Operator on Lattices

被引:0
作者
S. N. Lakaev
A. T. Boltaev
机构
[1] Samarkand State University,
[2] Romanovskii Institute of Mathematics,undefined
[3] Academy of Sciences of Uzbekistan,undefined
来源
Lobachevskii Journal of Mathematics | 2023年 / 44卷
关键词
Schrödinger operator; three-particle; Hamiltonian; essential spectrum; eigenvalue; boson; lattice; channel operator;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1176 / 1187
页数:11
相关论文
共 67 条
[1]  
Enss V.(1977)A note on Hunziker’s theorem Commun. Math. Phys. 52 233-238
[2]  
Hunziker W.(1966)On the spectra of Schrödinger multiparticle hamiltonians Helv. Phys. Acta 39 451-462
[3]  
Jörgens K.(1967)Zur spektraltheorie der Schrödinger operatoren Math. Z. 96 355-372
[4]  
van Winter C.(1964)“Theory of finite systems of particles,” I. Mat.- Fys. Skr. Danske Vid. Selsk 1 1-60
[5]  
Zhislin G.(1960)“Discussion of the spectrum of the Schrödinger operator for systems of many particles,” Tr. Mosk. Mat Ob-va 9 81-120
[6]  
Zoladek H.(1982)The essential spectrum of an N-particle additive cluster operator Sov. J. Theor. Math. Phys. 53 1085-107
[7]  
Graf G. M.(1997)“2-magnon scattering in the Heisenberg model,” Ann. Inst. Henri Poincaré, Phys Théor. 67 91-1536
[8]  
Schenker D.(2022)On the discrete spectra of Schrödinger-type operators on one dimensional Lattices Lobachevskii J. Math. 43 1523-605
[9]  
Lakaev S. N.(2021)On the spectrum of the two-particle Schrödinger operator with point interaction Lobachevskii J. Math. 42 598-31
[10]  
Boltaev A. T.(2022)On the spectrum of Schrödinger-type operators on two dimensional lattices J. Math. Anal. Appl. 514 126363-1-365