Global dynamics of SEIRS epidemic model with non-linear generalized incidences and preventive vaccination

被引:0
作者
Muhammad Altaf Khan
Qaisar Badshah
Saeed Islam
Ilyas Khan
Sharidan Shafie
Sher Afzal Khan
机构
[1] Abdul Wali Khan University,Department of Mathematics
[2] Majmaah University,College of Engineering
[3] Universiti Teknologi Malaysia,Department of Mathematical Sciences, Faculty of Science
[4] Abdul Wali Khan University,Department of Computer Sciences
来源
Advances in Difference Equations | / 2015卷
关键词
SEIRS epidemic model; generalized non-linear incidence rate; basic reproduction number; global stability; numerical simulations;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present the global dynamics of an SEIRS epidemic model for an infectious disease not containing the permanent acquired immunity with non-linear generalized incidence rate and preventive vaccination. The model exhibits two equilibria: the disease-free and endemic equilibrium. The disease-free equilibrium is stable locally as well as globally when the basic reproduction number R0<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{R}}_{0}<1$\end{document} and an unstable equilibrium occurs for R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{R}}_{0}>1$\end{document}. Moreover, the endemic equilibrium is stable both locally and globally when R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{R}}_{0}>1$\end{document}. We show the global stability of an endemic equilibrium by a geometric approach. Further, numerical results are presented to validate the theoretical results. Finally, we conclude our work with a brief discussion.
引用
收藏
相关论文
共 73 条
[1]  
Korobeinikov A(2003)Estimation of effective vaccination rate: pertussis in New Zealand as a case study J. Theor. Biol. 224 269-275
[2]  
Maini PK(2000)The mathematics of infectious diseases SIAM Rev. 42 599-653
[3]  
Walker WJ(1927)A contribution to the mathematical theory of epidemics Proc. R. Soc. A 115 700-721
[4]  
Hethcote HW(1992)Dynamic models of infectious diseases as regulator of population sizes J. Math. Biol. 30 693-716
[5]  
Kermack WO(2006)Global stability of the endemic equilibrium of multigroup SIR epidemic models Can. Appl. Math. Q. 14 259-284
[6]  
McKendrick AG(2013)Disease control of delay SEIR model with nonlinear incidence rate and vertical transmission Comput. Math. Methods Med. 2013 41-61
[7]  
Mena-Lorca J(1978)A generalization of the Kermack-McKendrick deterministic epidemic model Math. Biosci. 42 719-732
[8]  
Hethcote HW(2014)Complete global analysis of an SIRS epidemic model with graded cure and incomplete recovery rates J. Math. Anal. Appl. 410 188-205
[9]  
Guo H(2013)On the dynamics of SEIRS epidemic model with transport-related infection Math. Biosci. 245 630-640
[10]  
Li MY(2013)Global dynamics of an SEIRS epidemic model with constant immigration and immunity WSEAS Trans. Math. 12 187-204